Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ethiopian Ocean of The Future

09.06.2005


Research at the University of Leicester Department of Geology is confirming how a plume of hot mantle rock rising beneath Africa is splitting the continental crust apart and driving a plate tectonic sequence that could eventually form a new ocean in Ethiopia.

The extending East African Rift is a 3,000 kilometre crack in the Earth’s surface, stretching from Malawi in the south, through Tanzania, Kenya and Ethiopia, connecting with the Red Sea and the Gulf of Aden.

The character of the Rift changes from a faulted rift valley in Kenya, becoming more like a mid-ocean ridge in the northern Afar Depression, where magma rises to create the floor of an embryonic ocean.



Ethiopia lies in the transitional stage between the two, and studying the geological processes, structure and history of the magmatic Ethiopian Rift provides vital information about how a new ocean is formed.

Project EAGLE (the Ethiopia Afar Geoscientific Lithospheric Experiment) is a major earth science project in Africa looking at this process. Professor Peter Maguire, of the University of Leicester Department of Geology, is one of the leaders of this project, which is a collaboration between the Universities of Leicester, Leeds and Royal Holloway, London, as well as the University of Texas (El Paso) and Stanford, California, together with the University of Addis Ababa, Ethiopia.

The project, funded by the Natural Environment Research Council, aims to see deep into the Earth by using large seismic arrays to record natural earth tremors and vibrations from explosive charges detonated in boreholes. In addition, precise measurements of the Earth’s gravity field help to produce a 2D image of the Rift structure to a depth of almost 100 km.

Dave Cornwell, a geophysics PhD student working with Professor Maguire said:

“The Ethiopian Rift is where it’s all happening in one place – you have volcanoes, earthquakes, classic rift valley faults and complex geology. It’s one of a few places in the world where we can examine how geological processes combine to break up a continent.”

His research has found that the central Ethiopian rift structure is characterised by near-surface intrusions up to 20 km wide, consisting of dense igneous rock that originated in the upper mantle (at a depth of over 50 km).

Earthquake analyses have constrained the location and extent of the hot mantle plume immediately beneath the crust and his work has also identified zones in the crust including small amounts of molten rock beneath the rift itself, that have emerged from this plume.

This indicates that oceanic processes are apparently becoming dominant in this transitional stage of rifting, as a hot plume deep in the mantle causes melting then upwelling of buoyant molten rocks that cool in the form of elongated dykes in the crust. Dave Cornwell added:

“My results help to show that the Ethiopian Rift has matured from a purely continental rift, stretched and faulted by plate tectonic stresses, to a rift with a continental framework that is being injected with the molten rock. This represents the first few bricks in building a new ocean floor. It’s just a shame that it will take millions of years to complete!”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>