Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urban Heat Islands Make Cities Greener

30.07.2004


Some people think cities and nature don’t mix, but a new NASA-funded study finds that concrete jungles create warmer conditions that cause plants to stay green longer each year, compared to surrounding rural areas.

Urban areas with high concentrations of buildings, roads and other artificial surfaces retain heat, creating urban heat islands. Satellite data reveal that urban heat islands increase surface temperatures compared to rural surroundings.

Using information from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on the Terra satellite, Boston University, Boston, researchers discovered that city climates have a noticeable influence on plant growing seasons up to 10 kilometers (6 miles) away from a city’s edges. Growing seasons in 70 cities in eastern North America were about 15 days longer in urban areas compared to rural areas outside of a city’s influence.



"If you live in a rural area and drive regularly into the city, and if you pay attention to vegetation, you will see a difference in the growing seasons in early spring and late autumn," said Xiaoyang Zhang, the study’s lead author and a researcher at Boston University. The study appeared in a recent issue of the American Geophysical Union’s Geophysical Research Letters journal.

Zhang added that urban heat islands provide a very good model to assess the effects of global warming on plant growing seasons and ecosystems. As temperatures warm due to climate change, growing seasons will likely change as well. Zhang and colleagues found that for every 1 degree Celsius (C) or 1.8 Fahrenheit (F) that temperatures rose on average during the early springtime, vegetation bloomed 3 days earlier.

Springtime land surface temperatures in eastern North American cities were on average 2.3°C (4.1°F) warmer than surrounding rural areas, according to the study. In late autumn to winter, the city temperatures were 1.5°C (2.7°F) higher than the surrounding areas. These higher urban temperatures caused plants to start greening-up on average seven days earlier in spring. Similarly, in urban heat island areas, the growing season lasted eight days longer in the fall than the rural areas.

The researchers used MODIS surface reflectance data to measure seasonal changes in plant growth for the entire year of 2001. By accounting for angles of views from the satellite, varying sunlight, land surface temperatures, cloud cover, and the presence of snow, the scientists were able to detect daily variations in the green color of plants.

The researchers classified urban areas using MODIS data from October 2000 to October 2001, as well as Defense Meteorological Satellite Program’s (DMSP) nighttime lights imagery and population density data. Only eastern North American cities with urban areas larger than 10 square kilometers (4 square miles) were included in the study.

The researchers found that the effect urban heat islands have on plants’ growing seasons is exponentially weaker the further away from the city one travels. Significant effects were seen up to 10 kilometers (6 miles) from city lines. In other words, the impact of urban climates on ecosystems extended out 2.4 times the size of a city itself.

"Warming from global climate change will definitely impact ecosystems," Zhang said. "Thus, urban areas provide us with some measures of how changes in temperature might affect vegetation," he added.

NASA is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather, and natural hazards using the unique vantage point of space.

Krishna Ramanujan | NASAs Earth Science News Team
Further information:
http://www.gsfc.nasa.gov

More articles from Earth Sciences:

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

nachricht Drones survey African wildlife
11.07.2018 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>