Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atmospheric compound is double-edged sword in climate change

09.12.2003


Recent studies suggest that an atmospheric compound derived primarily from coal combustion may have contradictory effects on the earth’s climate.



Under many conditions, sulfuric acid may cool the earth’s atmosphere. Sulfuric acid particles seem to scatter ultraviolet light back into space before it has a change to enter the troposphere – the bottom layer of earth’s atmosphere. But if conditions are right, this same chemical can warm the earth by combining with other compounds in the atmosphere to form clouds.

Researchers at Ohio State University looked at the interaction of sulfuric acid and methanol and what the compounds’ combined effect might mean to global climate change. Both compounds are usually found in aerosol form in the upper atmosphere.


Scientists believe that methanol comes primarily from natural sources, such as oceans, forests and the decay of organic matter. While there are a few natural sources for sulfuric acid, such as volcanoes and marine sea spray, its precursor – sulfur dioxide – comes mainly from the burning of coal. In the atmosphere, sulfur dioxide is oxidized primarily by atmospheric moisture, resulting in sulfuric acid.

Sulfuric acid molecules in atmospheric aerosols can act as sort of a force field by reflecting light and heat back into space, said Heather Allen, a study co-author and an assistant professor of chemistry at Ohio State. This reflection contributes to a cooling effect on the earth. Methanol by itself doesn’t really have an effect on climate change.

But when the two molecules get together – about 5 to 10 percent of the methanol in the atmospheric aerosols reacts with sulfuric acid – they form methyl sulfate. Methyl sulfate is less volatile than methanol, meaning there’s less chance that methyl sulfate will evaporate or be vaporized.

And while it seems like a relatively small amount of methanol gets converted to methyl sulfate, it’s still enough to have an impact on global climate change, Allen said.

She and colleague Lisa Van Loon, a doctoral student in chemistry at Ohio State, found that methyl sulfate’s stability provides a springboard for cloud formation – water droplets collect on the stable molecules and eventually form clouds. Instead of causing light and heat to bounce back into space, most clouds create a warming effect by trapping light and heat in the atmosphere.

Van Loon presented the findings December 12 at the fall meeting of the American Geophysical Union in San Francisco.

The researchers used a laboratory technique called Raman spectroscopy to analyze the behavior of methanol, sulfuric acid and methyl sulfate. They focused a beam of laser light onto a sample of each substance in order to analyze differences in the bonds that hold the molecules together. The frequencies of the resulting wavelengths told the researchers how the compounds behaved, and also how methanol and sulfuric acid interacted. From this information, they could determine what each compound might do in the atmosphere.

The researchers found that sulfuric acid combines with a small amount of methanol– essentially starting points for cloud formation.

But the conditions must be right in order to create methyl sulfate, Allen said.

"The atmospheric chemistry community is trying to understand what conditions let these atmospheric particles combine, or cause them to stay aerosol-sized," Allen said, adding that cloud particles are about three times the size of aerosol particles.

The interaction between sulfuric acid and methanol affects global climate change and the aerosol picture, Allen said.

"Right now these aerosols are probably helping to slow down the human-induced warming effect on the earth, but it’s a complicated balance that we’re struggling to fully understand," she said. "We certainly know that the earth is warming at a rate that isn’t totally natural. It’s the warming rate that we’re more concerned about.

"More aerosols emitted into the atmosphere may lead to cooling," Allen continued. "But if these aerosols are able to combine with other compounds and ultimately form clouds, it could have a warming effect. There’s a complex balance between warming and cooling."


This work was funded by the National Science Foundation and the Natural Sciences and Engineering Research Council of Canada.

Contact: Heather Allen, (614) 292-4707; Allen@chemistry.ohio-state.edu
Written by Holly Wagner, (614) 292-8310; Wagner.235@osu.edu

Holly Wagner | EurekAlert!
Further information:
http://www.acs.ohio-state.edu/units/research/

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>