Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s most alkaline life forms found near Chicago

05.11.2003


Sometimes the most extreme environment for life isn’t at the bottom of the ocean or inside a volcano. It’s just south of Chicago.

Illinois groundwater scientists have found microbial communities thriving in the slag dumps of the Lake Calumet region of southeast Chicago where the water can reach extraordinary alkalinity of pH 12.8. That’s comparable to caustic soda and floor strippers -- far beyond known naturally occurring alkaline environments.

The closest known relatives of some of the microbes are in South Africa, Greenland and the alkaline waters of Mono Lake, California.



"Other alkaline communities have been found at pHs up to 11," says Illinois State Water Survey hydrogeologist George Roadcap. "That’s sort of the high end of known natural communities."

Roadcap and his colleagues at the University of Illinois Champaign Urbana came upon the microbes while studying contaminated groundwater created by more than a century of industrial iron slag dumping in southern Illinois and northern Indiana. Roadcap will present details of what appear to be the most alkaline-tolerant life known to date on Tuesday, Nov. 4 at the annual meeting of the Geological Society of America in Seattle, WA.

Genetic analyses at one site revealed bacteria related to Clostridium and Bacillus species. These are found in highly alkaline waters of Mono Lake, tufa columns in Greenland, and cement-contaminated groundwater in a deep gold mine in Africa. Some RNA sequences appeared most closely related to thermophilic, or "heat loving," bacteria found in other parts of the world. The temperatures of the slag dumps are not extraordinary at all, of course. In fact they get pretty cold in the winter, driving the pH even higher, says Roadcap.

At five other sites the dominant microbes belonged to the Proteobacteria class including a large number from the Comamonadacea family of the beta subclass. "In high-pH microcosms experiments, one of these microbes is closely related to a hydrogen oxidizer," said Roadcap. That means the bacteria exploits the hydrogen given off from the corrosion of metallic iron slag in water.

Just how the unusual bacteria got to the slag dumps is currently a mystery, says Roadcap. "I’d hate to hazard a guess," he said, regarding their origins. One possibility is that local bacteria adapted to the extreme environment over the last century. Another possibility is that they somehow got imported.

As for whether the unexpected microbial community has any effect on the extensive groundwater contamination problem in the slag dumps, "We have not come to any conclusion about that," says Roadcap. Among the possible harmful things microbes could do is collect and distribute hazardous materials to nearby lakes and wetlands. But so far that has not been documented.

Alkaline groundwater in the Lake Calumet region was created when steel slag was dumped and used to fill in wetlands and lakes. Water and air reacts with the slag to create lime (calcium hydroxide), driving up the pH. There is an estimated 21 trillion cubic feet of contaminated industrial fill dumped in southeast Illinois and northeast Indiana, about half of which is thought to be slag, Roadcap noted. The slag dumps where the microbial communities were found resembled filled wetlands and are often devoid of surface vegetation, he explained.

Ann Cairns | EurekAlert!
Further information:
http://www.sws.uiuc.edu
http://www.geosociety.org

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>