World’s most alkaline life forms found near Chicago

Sometimes the most extreme environment for life isn’t at the bottom of the ocean or inside a volcano. It’s just south of Chicago.

Illinois groundwater scientists have found microbial communities thriving in the slag dumps of the Lake Calumet region of southeast Chicago where the water can reach extraordinary alkalinity of pH 12.8. That’s comparable to caustic soda and floor strippers — far beyond known naturally occurring alkaline environments.

The closest known relatives of some of the microbes are in South Africa, Greenland and the alkaline waters of Mono Lake, California.

“Other alkaline communities have been found at pHs up to 11,” says Illinois State Water Survey hydrogeologist George Roadcap. “That’s sort of the high end of known natural communities.”

Roadcap and his colleagues at the University of Illinois Champaign Urbana came upon the microbes while studying contaminated groundwater created by more than a century of industrial iron slag dumping in southern Illinois and northern Indiana. Roadcap will present details of what appear to be the most alkaline-tolerant life known to date on Tuesday, Nov. 4 at the annual meeting of the Geological Society of America in Seattle, WA.

Genetic analyses at one site revealed bacteria related to Clostridium and Bacillus species. These are found in highly alkaline waters of Mono Lake, tufa columns in Greenland, and cement-contaminated groundwater in a deep gold mine in Africa. Some RNA sequences appeared most closely related to thermophilic, or “heat loving,” bacteria found in other parts of the world. The temperatures of the slag dumps are not extraordinary at all, of course. In fact they get pretty cold in the winter, driving the pH even higher, says Roadcap.

At five other sites the dominant microbes belonged to the Proteobacteria class including a large number from the Comamonadacea family of the beta subclass. “In high-pH microcosms experiments, one of these microbes is closely related to a hydrogen oxidizer,” said Roadcap. That means the bacteria exploits the hydrogen given off from the corrosion of metallic iron slag in water.

Just how the unusual bacteria got to the slag dumps is currently a mystery, says Roadcap. “I’d hate to hazard a guess,” he said, regarding their origins. One possibility is that local bacteria adapted to the extreme environment over the last century. Another possibility is that they somehow got imported.

As for whether the unexpected microbial community has any effect on the extensive groundwater contamination problem in the slag dumps, “We have not come to any conclusion about that,” says Roadcap. Among the possible harmful things microbes could do is collect and distribute hazardous materials to nearby lakes and wetlands. But so far that has not been documented.

Alkaline groundwater in the Lake Calumet region was created when steel slag was dumped and used to fill in wetlands and lakes. Water and air reacts with the slag to create lime (calcium hydroxide), driving up the pH. There is an estimated 21 trillion cubic feet of contaminated industrial fill dumped in southeast Illinois and northeast Indiana, about half of which is thought to be slag, Roadcap noted. The slag dumps where the microbial communities were found resembled filled wetlands and are often devoid of surface vegetation, he explained.

Media Contact

Ann Cairns EurekAlert!

Alle Nachrichten aus der Kategorie: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Scientists achieve higher precision weak force measurement between protons, neutrons

Through a one-of-a-kind experiment at the Department of Energy’s Oak Ridge National Laboratory, nuclear physicists have precisely measured the weak interaction between protons and neutrons. The result quantifies the weak…

High-performance single-atom catalysts for high-temperature fuel cells

Individual Pt atoms participate in catalytic reaction to faciitate the electrode process by up to 10 times. Single-atom Pt catalysts are stable at 700 degrees Celsius and expected to stimulate…

New method allows precise gene control by light

A novel optical switch makes it possible to precisely control the lifespan of genetic “copies”. These are used by the cell as building instructions for the production of proteins. The…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close