Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA working to take the guesswork out of long-term drought prediction

07.08.2003


Dr. Bob Oglesby, senior atmospheric scientist (NASA/MSFC/Doug Stoffer)


It´s tricky, this weather business — predicting drought, floods, rain or snow, especially months in advance. But NASA scientists at the National Space Science and Technology Center in Huntsville, Ala., are working to take the guesswork out of long-term prediction.

"We´re researching methods to predict precipitation a season or more in advance," said Dr. Bob Oglesby, a senior atmospheric scientist at the research center. The key, he said, is understanding how the atmosphere interacts with the land — sometimes in a way that completely alters the expected climate of a geographic area.

"The Gulf of Mexico, for example, is what keeps the Southeast from becoming semi-arid, or in the worst-case scenario, a big desert," he said, explaining that atmospheric flow sweeps primarily from west to east. Without the gulf, states like Alabama, Tennessee and Georgia would be forced to seek moisture from the Pacific Ocean. "But a series of mountain ranges blocks the way," he said. "If it weren´t for the nearby gulf, the lush, green landscapes of Southeast might more closely resemble the semi-arid landscapes of the great plains."



Just as mountain ranges can block moisture from an entire region, ridges of atmospheric pressure act as similar obstacles — blocking out much-needed moisture where conditions are dry, resulting in a "thermal mountain effect," first identified in 1953.

"Droughts are self-perpetuating," Oglesby said. "If an area is already experiencing drought conditions, it is more likely to continue in a drought. Similarly, if an area is experiencing extremely wet conditions, that trend is also likely to continue."

This self-perpetuating cycle is due to the interaction of moisture in the soil with the atmosphere. If the amount of rain or snowfall drops below average, the soil becomes dry. Then, as the Sun heats the Earth, less moisture is available for evaporation.

With the resulting reduction in evaporation — and its cooling effects — the surface of the Earth warms, heating the atmosphere. As the atmosphere´s temperature increases, air rises. This cycle reinforces the ridge of high pressure, enhancing its abilities to block the flow of moisture from bodies of water as well as reducing the likelihood of thunderstorm formation.

Drought conditions also may be predicted by studying other factors, including sea surface temperature variations such as those associated with ocean warming effects from El Niño, and ocean cooling effects from La Niña; north Atlantic oscillation, or air flow; and snow cover in surrounding regions.

Oglesby´s research uses computer models to simulate and predict weather conditions, using data such as soil moisture, precipitation and Earth´s surface temperature. The biggest challenge in making long-term predictions, he said, is a lack of sufficient data on soil moisture, especially moisture in lower layers of the soil.

"If someone could provide us with the state of soil moisture over a sufficiently large area, we can begin to predict its impact on precipitation over the next season or two," he said. Oglesby sees hope for better data in the future from NASA remote sensing technology that gleans information using satellite or flights over select areas.

Above-average rainfall or snow in the winter or spring can increase soil moisture to levels needed to help break the cycle of drought. But an average series of short, light rain showers — common in much of the South — are not generally enough, said Oglesby. "Even though surface soil may be wetted periodically, light rains may not drop enough moisture to reach lower soil areas. These perpetually dry areas, in turn, cause top soil to dry more quickly — once again hindering the Earth´s natural cooling process."

But there is hope even in the midst of drought conditions. "Even in a dry, Alabama summer, it rains," said Oglesby, noting that large-scale circulation and thunderstorms in the summer can also break the cycle of drought. "The trick," he said, "is replenishing the moisture in the soil before it´s too late."

From NASAs Marshall Space Flight Center in Huntsville, Oglesby has co-authored three research papers since 2001, published in the Journal of Climate and the Journal of Geophysical Research. Topics include diagnosing warm season precipitation, thresholds in atmosphere-soil moisture interactions and the predictability of winter snow cover over the Western United States.

Oglesby has a bachelors degree in physical geography from the University of California in Davis and a doctorate in atmospheric dynamics from Yale University in New Haven, Conn. He is based at the Global Hydrology and Climate Center, one of seven science research centers at the National Space Science and Technology Center, a partnership with NASAs Marshall Space Flight Center, Alabama universities, industry and federal agencies.

Contact: Steve Roy, steve.roy@msfc.nasa.gov

Steve Roy | NSSTC News
Further information:
http://www.msfc.nasa.gov/news

More articles from Earth Sciences:

nachricht Huge stores of Arctic sea ice likely contributed to past climate cooling
21.02.2020 | University of Massachusetts Amherst

nachricht First research results on the "spectacular meteorite fall" of Flensburg
18.02.2020 | Westfälische Wilhelms-Universität Münster

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>