Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps oceanographers probe deep into the world of breaking wave bubbles

22.08.2002


Important ocean process examined with newly developed ’BubbleCam’



The relaxing atmosphere of a walk along the shore, especially the sounds of waves breaking on the beach, has seemingly forever lured people to coastlines.

For Grant Deane and Dale Stokes, oceanographers at Scripps Institution of Oceanography at the University of California, San Diego, the seaside sounds of hundreds of millions of air bubbles bursting at the shoreline represent an important key to understanding a variety of ocean phenomena.


In the August 22 issue of the journal Nature, Deane and Stokes provide unprecedented insight into the characteristics and dynamics of bubbles inside breaking waves. The researchers used acoustical and optical observations, including data from a high-tech "BubbleCam," to develop a new depiction of bubble sizes and creation processes.

Bubbles created in breaking ocean waves play an important role in a variety of ocean and atmospheric processes, including air-sea gas transfer, heat and moisture exchange, aerosol production, and climate change.

"Bubbles," says Deane, "turn out to be the centerpiece for a diverse range of both ocean-based and culturally important phenomena. They play a part in global climate change because the global rates of carbon dioxide exchanges are in part dictated by bubble-mediated gas transport."

Knowing that the most important property of breaking wave bubbles is their size distribution, Deane and Stokes set out to look at bubble dynamics in a new way. They probed the properties of bubbles both in a controlled environment inside wave tanks at the Scripps Hydraulics Laboratory and in the open ocean during experiments on the Scripps research platform FLIP. In each case they probed the dynamic processes that occur during the first seconds of wave breaking and bubble formation.

They also developed a unique instrument, the "BubbleCam," to meticulously track the bubble size spectrum.

"BubbleCam is a high-speed video camera with an intricate lens and light-focusing system that lets us take finely sliced pictures as waves break," said Stokes of the Scripps Marine Physical Laboratory. "We can gather all those images and feed them into a computer that does the bubble counting for us."

The results point to two distinct mechanisms controlling bubble size distribution. They found that the size distribution follows one law for bubbles smaller than about one millimeter, and another for larger bubbles. Big bubbles are formed when the wave curls over onto itself, creating the tube beloved by surfers. Smaller bubbles are created by the splash of the wave’s tip hitting its face.

"These results are one more piece of information," said Deane. "Why do you get the number and sizes of bubbles you do in breaking waves? It’s a very basic science question that we’re trying to answer. It’s like the big bang theory of bubbles as our research looks back earlier in their formation. There’s a whole cascade of length and time scales and with these results we’re up to a certain point. If we keep moving back in that direction we’ll discover more interesting physics about what’s happening."

Deane and Stokes’s results will now be incorporated into models of bubble-mediated air-sea gas transport to help improve their accuracy. Down the road, their research may lead to the development of new instruments that will allow scientists to remotely monitor greenhouse gas transfer.

"On the surface, breaking waves seem to be very complicated," said Deane. "But underneath there is a very appealing and simple process driving this. That’s the idea. There are patterns of order within the complexity. Every wave is unique and yet there are simple, underlying processes there to be found."

"The images that we capture are beautiful in an aesthetic way," said Stokes. "They are elegant. There is basic physics explaining something very complex like a breaking wave. You can see that in the mathematics and you can see that in the images."


###
Deane and Stokes’s research was supported by the National Science Foundation and the Office of Naval Research.

Images, video available upon request.

Scripps Institution of Oceanography on the web: http://scripps.ucsd.edu
Scripps News on the web: http://scrippsnews.ucsd.edu
Scripps Centennial on the web: http://scripps100.ucsd.edu

Scripps Institution of Oceanography at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and graduate training in the world. The scientific scope of the institution has grown since its founding in 1903. A century of Scripps science has had an invaluable impact on oceanography, on understanding of the earth, and on society. More than 300 research programs are under way today in a wide range of scientific areas. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration. Now plunging boldly into the 21st century, Scripps will celebrate its centennial in 2003.


Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu/

More articles from Earth Sciences:

nachricht Atmospheric scientists reveal the effect of sea-ice loss on Arctic warming
11.03.2019 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Sensing shakes
11.03.2019 | University of Tokyo

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>