Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Mineral Shows Early Earth Climate Tough on Continents

17.06.2008
A new analysis of ancient minerals called zircons suggests that a harsh climate may have scoured and possibly even destroyed the surface of the Earth's earliest continents.

Zircons, the oldest known materials on Earth, offer a window in time back as far as 4.4 billion years ago, when the planet was a mere 150 million years old. Because these crystals are exceptionally resistant to chemical changes, they have become the gold standard for determining the age of ancient rocks, says University of Wisconsin-Madison geologist John Valley.

Valley previously used these tiny mineral grains - smaller than a speck of sand - to show that rocky continents and liquid water formed on the Earth much earlier than previously thought, about 4.2 billion years ago.

In a new paper published online this week in the journal Earth and Planetary Science Letters, a team of scientists led by UW-Madison geologists Takayuki Ushikubo, Valley and Noriko Kita show that rocky continents and liquid water existed at least 4.3 billion years ago and were subjected to heavy weathering by an acrid climate.

Ushikubo, the first author on the new study, says that atmospheric weathering could provide an answer to a long-standing question in geology: why no rock samples have ever been found dating back to the first 500 million years after the Earth formed.

"Currently, no rocks remain from before about 4 billion years ago," he says. "Some people consider this as evidence for very high temperature conditions on the ancient Earth."

Previous explanations for the missing rocks have included destruction by barrages of meteorites and the possibility that the early Earth was a red-hot sea of magma in which rocks could not form.

The current analysis suggests a different scenario. Ushikubo and colleagues used a sophisticated new instrument called an ion microprobe to analyze isotope ratios of the element lithium in zircons from the Jack Hills in western Australia. By comparing these chemical fingerprints to lithium compositions in zircons from continental crust and primitive rocks similar to the Earth's mantle, they found evidence that the young planet already had the beginnings of continents, relatively cool temperatures and liquid water by the time the Australian zircons formed.

"At 4.3 billion years ago, the Earth already had habitable conditions," Ushikubo says.

The zircons' lithium signatures also hold signs of rock exposure on the Earth's surface and breakdown by weather and water, identified by low levels of a heavy lithium isotope. "Weathering can occur at the surface on continental crust or at the bottom of the ocean, but the [observed] lithium compositions can only be formed from continental crust," says Ushikubo.

The findings suggest that extensive weathering may have destroyed the Earth's earliest rocks, he says.

"Extensive weathering earlier than 4 billion years ago actually makes a lot of sense," says Valley. "People have suspected this, but there's never been any direct evidence."

Carbon dioxide in the atmosphere can combine with water to form carbonic acid, which falls as acid rain. The early Earth's atmosphere is believed to have contained extremely high levels of carbon dioxide - maybe 10,000 times as much as today.

"At [those levels], you would have had vicious acid rain and intense greenhouse [effects]. That is a condition that will dissolve rocks," Valley says. "If granites were on the surface of the Earth, they would have been destroyed almost immediately - geologically speaking - and the only remnants that we could recognize as ancient would be these zircons."

Additional information and images are available on the authors' web sites Zircons Are Forever (http://www.geology.wisc.edu/zircon/zircon_home.html) and the Wisc-SIMS ion microprobe facility (http://www.geology.wisc.edu/facilities/wiscsims/wisc_sims.html).

Other co-authors on the paper include Aaron Cavosie of the University of Puerto Rico, Simon Wilde of the Curtin University of Technology in Australia and Roberta Rudnick of the University of Maryland.

Jill Sakai | newswise
Further information:
http://www.wisc.edu
http://www.geology.wisc.edu/zircon/zircon_home.html
http://www.geology.wisc.edu/facilities/wiscsims/wisc_sims.html

More articles from Earth Sciences:

nachricht Volcanoes and glaciers combine as powerful methane producers
20.11.2018 | Lancaster University

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New Insight into Molecular Processes

22.11.2018 | Physics and Astronomy

Crowdsourced field data shows importance of smallholder farms to global food production

22.11.2018 | Agricultural and Forestry Science

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>