Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic ice more vulnerable to sunny weather

22.04.2008
The shrinking expanse of Arctic sea ice is increasingly vulnerable to summer sunshine. Unusually sunny weather contributed to last summer's record loss of Arctic ice, while similar weather conditions in past summers did not appear to have comparable impacts, new research concludes.

"The relative importance of solar radiation in the summer is changing," says Jennifer Kay of the National Center for Atmospheric Research (NCAR) in Boulder, Colo., who is lead author of the study. "The amount of sunshine reaching the Arctic is increasingly influential, as there is less ice to reflect it back into space," she says.

The findings by Kay and colleagues at NCAR and Colorado State University
(CSU) in Fort Collins indicate that the presence or absence of clouds now has greater implications for sea ice loss.

"A single unusually clear summer can now have a dramatic impact," Kay says.

A report on the new results will be published tomorrow 22 April 2008 in Geophysical Research Letters, a journal of the American Geophysical Union (AGU).

Last summer's loss of Arctic sea ice set a modern-day record, with the ice extent shrinking in September to a minimum of about 4.1 million square kilometers (1.6 million square miles). That was 43 percent less ice coverage than in 1979, when accurate satellite observations began.

The soon-to-be-published study draws on observations from new NASA satellite radar and lidar instruments. Lidar devices make measurements using lasers.

Looking at the first two years of satellite data from those sensors, Kay and her colleagues found that total 2007 summertime cloud cover was 16 percent less than the year before, largely because of a strong high-pressure system centered north of Alaska that kept skies clear.

Over a three-month period in the summer, the increased sunshine was strong enough to melt about a foot of surface ice. Over open water, it was sufficient to increase sea-surface temperatures by 2.4 degrees Celsius (4.3 degrees Fahrenheit).

Warmer ocean waters can contribute to sea ice loss by melting the ice from the bottom, thereby thinning it and making it more susceptible to future melt.

"Satellite radar and lidar measurements allow us to observe Arctic clouds in a new way," says CSU's Tristan L'Ecuyer, a co-author of the study. "These new instruments not only provide a very precise view of where clouds exist but also tell us their height and thickness, which are key properties that determine the amount of sunlight clouds reflect back to space."

The research team also examined longer-term records of Arctic cloud and weather patterns, including a 62-year-long record of cloudiness from surface observations at Barrow, Alaska. The scientists found that the 2007 weather and cloud pattern was unusual but not unprecedented. Five other years--1968, 1971, 1976, 1977, and 1991--appeared to have lower summertime cloud cover than 2007, but without the same impact on sea ice.

"In a warmer world, the thinner sea ice is becoming increasingly sensitive to year- to-year variations in weather and cloud patterns," Kay says.

The research suggests that warmth from the sun will increasingly affect Arctic climate in the summer. As the ice shrinks, incoming sunshine triggers a feedback

mechanism: the newly exposed dark ocean waters, much darker than the ice, absorb the sun's radiation instead of reflecting it. This warms the water and melts more ice, which in turn leads to more absorption of radiation and still more warming.

The authors note that, in addition to solar radiation, other factors such as changes in wind patterns and, possibly, shifts in ocean circulation patterns also influence sea ice loss. In particular, strong winds along regions of sea ice retreat were important to last year's loss of ice. The relative importance of these factors, and the precise extent to which global climate change is driving them, are not yet known.

This study was funded by NASA and by the National Science Foundation.

Title:
"The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum."
Authors:
Jennifer Kay and Andrew Gettelman: Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado, USA.; Kay is also with Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado, USA.;

Tristan L'Ecuyer, Graeme Stephens, and Chris O'Dell: Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado, USA.

Citation:
Kay, J. E., T. L'Ecuyer, A. Gettelman, G. Stephens,and C. O'Dell (2008), The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum, Geophys.Res. Lett., 35, L08503, doi:10.1029/2008GL033451.
Contact information for coauthors:
Jennifer Kay, NCAR Scientist (also affiliated with CSU), +1-303-497-1730, jenkay@ucar.edu

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org
http://www.ucar.edu

More articles from Earth Sciences:

nachricht Live from the ocean research vessel Atlantis
13.12.2018 | National Science Foundation

nachricht NSF-supported scientists present new research results on Earth's critical zone
13.12.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>