Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists expand understanding of how river carbon impacts the Arctic Ocean

14.02.2008
Arctic rivers transport huge quantities of dissolved organic carbon (DOC) to the Arctic Ocean. The prevailing paradigm regarding DOC in arctic rivers is that it is largely refractory, making it of little significance for the biogeochemistry of the Arctic Ocean.

However, a recent study by R. M. Holmes of the Woods Hole Research Center and colleagues at collaborating institutions challenges that assumption by showing that DOC in Alaskan arctic rivers is remarkably labile during the spring flood period when the majority of annual DOC flux occurs. The research was published February 9 in Geophysical Research Letters.

According to Dr. Holmes, “Though only about 1% of global ocean volume, the Arctic Ocean receives almost 10% of global river discharge. As a consequence, organic carbon transported by arctic rivers has the potential to strongly impact the chemistry and biology of the Arctic Ocean”.

The primary focus of the paper is the lability of dissolved organic carbon in Alaskan arctic rivers, or how available the DOC is for microbial decomposition. Because of logistical challenges, past studies have focused almost exclusively on the summer low-flow period, when numerous studies have shown arctic river DOC to be refractory. However, by timing their sampling to include the high-flow period just after the spring ice break, the authors found that much of the DOC discharged by Alaskan rivers to the Arctic Ocean is labile. Consequently, riverine inputs of DOC to the Arctic Ocean may have a much larger influence on coastal ocean biogeochemistry than previously realized, and reconsideration of the role of terrigenous DOC on carbon, microbial, and food-web dynamics on the arctic shelf is warranted.

Holmes says, “Though tantalizing evidence has been emerging in recent years, this study was the first to directly show that dissolved organic carbon in rivers during the spring flood period is highly labile.”

Rivers sampled for this project were the Kuparuk, Sagavanirktok, and Colville rivers on the North Slope of Alaska. The next step will be to conduct similar experiments on larger arctic rivers, including the massive rivers entering the Arctic Ocean from Siberia.

Holmes adds, “If the pattern we’ve shown for Alaskan arctic rivers holds for the much larger Siberian rivers, and preliminary evidence suggests that it will, then we’ll have to rethink the role of terrestrially-derived DOC as a potential energy source driving the coastal ocean foodweb in the Arctic.”

Elizabeth Braun | EurekAlert!
Further information:
http://www.whrc.org

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>