Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic expeditions find giant mud waves, glacier tracks

14.12.2007
Scientists gathering evidence of ancient ice sheets uncovered a new mystery about what's happening on the Arctic sea floor today.

Sonar images revealed that, in some places, ocean currents have driven the mud along the Arctic Ocean bottom into piles, with some “mud waves” nearly 100 feet across.

Around the world, strong currents often create a wavy surface on the ocean bottom. But scientists previously thought the Arctic Ocean was too calm to do so.

Leonid Polyak, a research scientist at Byrd Polar Research Center at Ohio State University, said that it's too early to know how the waves formed.

“The mud waves could be caused by tidal fluctuations,” he said. “But that's really just speculation at this point.”

Polyak was one of the leaders of an international scientific expedition that crossed the Arctic Ocean in 2005, and he was part of a recent icebreaker expedition in 2007. Both missions took images of the ocean bottom with sonar and drew sediment cores from the ocean bottom.

Now that the sediment cores -- more than 1,000 feet in total -- are stored in a refrigerated facility of the Byrd Polar Research Center on the Ohio State campus, Polyak and his colleagues have begun their analysis.

Martin Jakobsson of Stockholm University in Sweden -- a team member and leader of the geology party in the 2007 expedition -- summarized the early findings of both sonar surveys Thursday, December 13, 2007, at the American Geophysical Union meeting in San Francisco . The presentation was part of a session on Arctic Ocean environmental history, and a related poster session was scheduled for Friday morning.

The 2005 Healy-Oden Trans-Arctic Expedition (HOTRAX) -- a cooperative effort between the United States Coast Guard Cutter Healy and the Swedish icebreaker Oden -- was the first scientific expedition to transit the entire Arctic Ocean in the direction from Alaska to Scandinavia . The scientists took sediment cores from 29 sites along the way.

For the 2007 Lomonosov Ridge off Greenland (LOMROG) expedition, the Oden joined with a Russian nuclear icebreaker called 50 let Pobedy (“50 Years of Victory”) to explore a smaller, difficult to access region of the Arctic Ocean near Greenland.

Both expeditions took images of the ocean bottom with a sonar system that also allowed them to view layers of sediment up to 1000 feet below ground.

The purpose of HOTRAX and LOMROG was to gather a sediment record of how the Arctic has changed over time, and also to find evidence of the ancient ice sheets that helped shape the Arctic Ocean seafloor. Scientists hope to use what they learned to better understand how water is exchanged between the basins, and how the Arctic affects (and is affected by) global climate systems.

This is a critical time for the Arctic, Polyak said. In the summer of 2007, much less ice covered the region than during any other time in the last century.

“Even a couple of years ago, we wouldn't have predicted that so little ice would cover the Arctic Ocean ,” he said. “It really looks like we may be living in a completely different world 20 to 30 years from now, with no ice in the Arctic in summer at all.”

The expeditions proved that giant ice masses once covered the arctic -- ice flows massive enough to scrape the ocean bottom half a mile deep. Sonar clearly showed the parallel grooves that ice flows carved in the sea floor, and boulders and other debris that the ice left behind.

As the scientists study the sediments and images in detail, they will focus on more recent Earth history -- specifically the last 150,000 years -- to find out how conditions during warm periods in the recent past resemble what we will likely have in the near future.

The mud waves that they spied on the ocean floor are another mystery, one that the scientists haven't begun to probe.

“Frankly, we have so much material to go through, and we've only just started,” Polyak said. “The goal is to establish a climate record in the sediments. To figure it out, we'll go through the cores centimeter by centimeter.”

The 2005 expedition was funded by the National Science Foundation, the Swedish Polar Research Secretariat, and the Swedish Science Council.

Leonid Polyak | EurekAlert!
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht Massive organism is crashing on our watch
18.10.2018 | S.J. & Jessie E. Quinney College of Natural Resources, Utah State University

nachricht Arctic sea ice decline driving ocean phytoplankton farther north
16.10.2018 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

RUDN chemist tested a new nanocatalyst for obtaining hydrogen

18.10.2018 | Life Sciences

Massive organism is crashing on our watch

18.10.2018 | Earth Sciences

Electrical enhancement: Engineers speed up electrons in semiconductors

18.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>