Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paleoclimate Record Points Toward Potential Rapid Climate Changes

09.12.2011
New research into the Earth's paleoclimate history by NASA's Goddard Institute for Space Studies director James E. Hansen suggests the potential for rapid climate changes this century, including multiple meters of sea level rise, if global warming is not abated.

By looking at how the Earth's climate responded to past natural changes, Hansen sought insight into a fundamental question raised by ongoing human-caused climate change: "What is the dangerous level of global warming?" Some international leaders have suggested a goal of limiting warming to 2 degrees Celsius from pre-industrial times in order to avert catastrophic change. But Hansen said at a press briefing at a meeting of the American Geophysical Union in San Francisco on Tues, Dec. 6, that warming of 2 degrees Celsius would lead to drastic changes, such as significant ice sheet loss in Greenland and Antarctica.

Based on Hansen's temperature analysis work at the Goddard Institute for Space Studies, the Earth's average global surface temperature has already risen .8 degrees Celsius since 1880, and is now warming at a rate of more than .1 degree Celsius every decade. This warming is largely driven by increased greenhouse gases in the atmosphere, particularly carbon dioxide, emitted by the burning of fossil fuels at power plants, in cars and in industry. At the current rate of fossil fuel burning, the concentration of carbon dioxide in the atmosphere will have doubled from pre-industrial times by the middle of this century. A doubling of carbon dioxide would cause an eventual warming of several degrees, Hansen said.

In recent research, Hansen and co-author Makiko Sato, also of Goddard Institute for Space Studies, compared the climate of today, the Holocene, with previous similar "interglacial" epochs – periods when polar ice caps existed but the world was not dominated by glaciers. In studying cores drilled from both ice sheets and deep ocean sediments, Hansen found that global mean temperatures during the Eemian period, which began about 130,000 years ago and lasted about 15,000 years, were less than 1 degree Celsius warmer than today. If temperatures were to rise 2 degrees Celsius over pre-industrial times, global mean temperature would far exceed that of the Eemian, when sea level was four to six meters higher than today, Hansen said.

"The paleoclimate record reveals a more sensitive climate than thought, even as of a few years ago. Limiting human-caused warming to 2 degrees is not sufficient," Hansen said. "It would be a prescription for disaster."

Hansen focused much of his new work on how the polar regions and in particular the ice sheets of Antarctica and Greenland will react to a warming world.

Two degrees Celsius of warming would make Earth much warmer than during the Eemian, and would move Earth closer to Pliocene-like conditions, when sea level was in the range of 25 meters higher than today, Hansen said. In using Earth's climate history to learn more about the level of sensitivity that governs our planet's response to warming today, Hansen said the paleoclimate record suggests that every degree Celsius of global temperature rise will ultimately equate to 20 meters of sea level rise. However, that sea level increase due to ice sheet loss would be expected to occur over centuries, and large uncertainties remain in predicting how that ice loss would unfold.

Hansen notes that ice sheet disintegration will not be a linear process. This non-linear deterioration has already been seen in vulnerable places such as Pine Island Glacier in West Antarctica, where the rate of ice mass loss has continued accelerating over the past decade. Data from NASA's Gravity Recovery and Climate Experiment (GRACE) satellite is already consistent with a rate of ice sheet mass loss in Greenland and West Antarctica that doubles every ten years. The GRACE record is too short to confirm this with great certainty; however, the trend in the past few years does not rule it out, Hansen said. This continued rate of ice loss could cause multiple meters of sea level rise by 2100, Hansen said.

Ice and ocean sediment cores from the polar regions indicate that temperatures at the poles during previous epochs – when sea level was tens of meters higher – is not too far removed from the temperatures Earth could reach this century on a "business as usual" trajectory.

"We don’t have a substantial cushion between today's climate and dangerous warming," Hansen said. "Earth is poised to experience strong amplifying feedbacks in response to moderate additional global warming."

Detailed considerations of a new warming target and how to get there are beyond the scope of this research, Hansen said. But this research is consistent with Hansen's earlier findings that carbon dioxide in the atmosphere would need to be rolled back from about 390 parts per million in the atmosphere today to 350 parts per million in order to stabilize the climate in the long term. While leaders continue to discuss a framework for reducing emissions, global carbon dioxide emissions have remained stable or increased in recent years.

Hansen and others noted that while the paleoclimate evidence paints a clear picture of what Earth's earlier climate looked like, but that using it to predict precisely how the climate might change on much smaller timescales in response to human-induced rather than natural climate change remains difficult. But, Hansen noted, the Earth system is already showing signs of responding, even in the cases of "slow feedbacks" such as ice sheet changes.

The human-caused release of increased carbon dioxide into the atmosphere also presents climate scientists with something they've never seen in the 65 million year record of carbon dioxide levels – a drastic rate of increase that makes it difficult to predict how rapidly the Earth will respond. In periods when carbon dioxide has increased due to natural causes, the rate of increase averaged about .0001 parts per million per year – in other words, one hundred parts per million every million years. Fossil fuel burning is now causing carbon dioxide concentrations to increase at two parts per million per year.

"Humans have overwhelmed the natural, slow changes that occur on geologic timescales," Hansen said.

Patrick Lynch
NASA's Earth Science News Team

Patrick Lynch | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/rapid-change-feature.html

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>