Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ozone-destroying gases on the rise

17.02.2015

Scientists report that chemicals that are not controlled by a United Nations treaty designed to protect the Ozone Layer are contributing to ozone depletion.

In the new study, published today in Nature Geoscience, the scientists also report the atmospheric abundance of one of these 'very short-lived substances' (VSLS) is growing rapidly.


This is an infographic showing how VSLS deplete ozone.

Credit: University of Leeds

Study lead author Dr Ryan Hossaini, from the School of Earth and Environment at the University of Leeds, said: "VSLS can have both natural and industrial sources. Industrial production of VSLS is not controlled by the United Nations Montreal Protocol because historically these chemicals have contributed little to ozone depletion.

"But we have identified now that one of these chemicals is increasing rapidly and, if this increase is allowed to continue, it could offset some of the benefits to the Ozone Layer provided by the Montreal Protocol."

In the study, the researchers used a 3D computer model of the atmosphere to determine the impact of VSLS on ozone and climate.

Measurements of VSLS in the atmosphere over the past two decades, provided by collaborators from the National Oceanic and Atmospheric Administration (NOAA) in the United States, were also analysed. These measurements revealed a rapid increase in atmospheric concentrations of dichloromethane, a man-made VSLS used in a range of industrial processes.

Study co-author Professor Martyn Chipperfield, from Leeds' School of Earth and Environment, said: "We need to continue monitoring the atmospheric abundance of these gases and determine their sources. At present, the long-term recovery of the Ozone Layer from the effects of CFCs is still on track, but the presence of increasing dichloromethane will lead to uncertainty in our future predictions of ozone and climate."

The researchers found that while the amount of ozone depletion arising from VSLS in the atmosphere today is small compared to that caused by longer-lived gases, such as CFCs, VSLS-driven ozone depletion was found to be almost four times more efficient at influencing climate.

Dr Hossaini explained: "Due to their short atmospheric lifetimes, VSLS break down and destroy ozone in the lowermost part of the stratosphere. This is important, as a molecule of ozone lost in this region has a far larger impact on climate than a molecule destroyed at higher altitudes by longer-lived gases."

The researchers also separated out natural sources of VSLS - such as seaweed in the ocean - and those released due to human activity - such as industrial processes - in order to determine the relative importance of each.

At present, naturally-emitted VSLS account for around 90% of the total ozone loss caused by VSLS in the lower stratosphere. However, the contribution from man-made VSLS compounds is increasing and appears set to increase further in coming years.

Study co-author Dr Stephen Montzka from the NOAA added: "The increases observed for dichloromethane are striking and unexpected; concentrations had been decreasing slowly in the late 1990s, but since then have increased by about a factor of two at sites throughout the globe."

Dr Hossaini said: "It is uncertain what is driving this growth. However, it could be partly due to the fact that dichloromethane is used in the manufacturing process of some HFCs, the 'ozone-friendly' gases which were developed to replace CFCs. This would mean, ironically, that production of ozone-friendly chemicals is actually releasing some ozone-destroying gases into the atmosphere."

Further information

The study was funded by the Natural Environment Research Council (NERC).

The research paper, 'Efficiency of short-lived halogens at influencing climate through depletion of stratospheric ozone', is published in the journal Nature Geoscience on 16 February 2015: http://dx.doi.org/10.1038/ngeo2363

Dr Ryan Hossaini and Professor Martyn Chipperfield are available for interview. Please contact Sarah Reed, Press Officer at the University of Leeds, on +44 (0)7712 389448 or pressoffice@leeds.ac.uk

Media Contact

Sarah Reed
pressoffice@leeds.ac.uk
44-077-123-89448

 @universityleeds

http://www.leeds.ac.uk 

Sarah Reed | EurekAlert!

More articles from Earth Sciences:

nachricht New insight into glaciers regulating global silicon cycling
14.08.2019 | University of Bristol

nachricht Coastal marine sediments contribute to the formation of greenhouse gases
31.07.2019 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Graphene nanoflakes: a new tool for precision medicine

19.08.2019 | Health and Medicine

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>