Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees Tropical Storm Washi's rainfall intensify over larger area

19.12.2011
NASA's TRMM satellite noticed that as Tropical Storm Washi approached the Philippines' island of Mindanao heavy rainfall had become more widespread than the previous day. NASA's Terra satellite captured Washi making landfall early today.

Early on Dec. 15 when NASA's Tropical Rainfall Measuring Mission (TRMM) satellite passed over Tropical Storm Washi, (known as Sendong in the Philippines) there was one area to the southwest of the center that had heavy rainfall. When TRMM passed over Washi later on Dec. 15 at 1515 UTC (10:15 a.m. EST), heavy rainfall was more widespread throughout the entire storm. TRMM saw areas of heavy rain, falling at 2 inches (50 mm) per hour, in the east, north and western quadrants of the storm.


NASA's Terra satellite flew over Tropical Storm Washi on Dec. 16 at 01:45 UTC and captured this visible image of the storm. The western half of Washi was already over Minandao in the southern Philippines. Credit: Credit: NASA Goddard MODIS Rapid Response Team

That rainfall analysis was created at NASA's Goddard Space Flight Center in Greenbelt, Md. using the TRMM Microwave Imager (TMI) and Precipitation Radar (PR) data overlaid on an enhanced infrared image from the satellite's Visible and InfraRed Scanner (VIRS). The rainfall analysis showed that Washi was much better organized and bands of thunderstorms spiraling into the center of the storm.

TRMM PR data was also used to create a 3-D image from the same satellite overpass and showed numerous heavy thunderstorms were located throughout the tropical cyclone. The tallest thunderstorms reached heights of over 15 km (~9.3 miles) and were located in the feeder bands converging into northwest side of the storm.

On Dec. 16 at 01:45 UTC, NASA's Terra satellite flew over Tropical Storm Washi and captured a visible image of the storm using the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. MODIS showed the western half of Washi was already over Mindanao in the southern Philippines. Mindanao is the second largest and easternmost island of the Philippines.

Warnings in effect in the Philippines for Dec. 16 include: Public storm warning signal #2 for Mindanao: Misamis Oriental & Occidental, Camaguin Island, Bukidnon, Lanao del Norte & Sur and Zamboanga Provinces. Public storm warning signal #1 is in effect for Mindanao: Bohol, Siquijor, Southern Cebu, Negros Oriental and Southern Negros Occidental; and for Visayas: Surigao Del Norte, Agusan del Norte & Sur, Davao del Norte, Compostela Valley, North Cotabato and Maguindanao; and in Luzon: Palawan.

At 1500 UTC (10 a.m. EST) on Dec. 16, Tropical Storm Washi's maximum sustained winds were near 50 knots (57 mph/92 kmh). Those tropical storm-force winds extend out 50 miles (80 km) from the center making the storm over 100 miles in diameter.

Washi was about 230 miles (370 km) east-northeast of Zamboanga, in Minandao Philippines near 8.4 North and 125.5 East. Washi was moving to the west-northwest at 13 knots (15 mph/24 kmh) but slowing down as it interacts with land. As Washi slowed, the Joint Typhoon Warning Center (JWTC)noted that convection (rising air that forms thunderstorms that make up the tropical storm) and thunderstorms spread to all quadrants of the storm. The strongest thunderstorms appeared over the southwestern quadrant this morning.

Washi was making landfall over Mindanao on Dec. 15 at 1500 UTC and will continue moving westward. The JTWC expects Washi to re-intensify over the Sulu Sea and make a final landfall this weekend in Vietnam.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>