Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees Tropical Cyclone Ita over the Coral Sea

15.04.2014

Tropical Cyclone Ita made landfall in northeastern Queensland, Australia on April 11 as a powerful Category 4 hurricane on the Saffir-Simpson scale, moved south and re-emerged in the Coral Sea on April 14 where NASA's TRMM and NASA-NOAA's Suomi NPP Satellites captured imagery of the weakened storm.

The VIIRS instrument aboard NASA-NOAA's Suomi NPP satellite captured a visible look at Ita's elongating structure on April 14 at 4:12 UTC/12:12. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument collects visible and infrared imagery and global observations of land, atmosphere, cryosphere and oceans. Strong northwesterly vertical wind shear was evident because the bulk of the storm's clouds were pushed southeast of the center. The VIIRS image also revealed that Ita no longer maintained a rounded shape.


NASA's TRMM satellite rainfall data was combined with infrared data from Japan's MTSAT-2 to create this image of Tropical Cyclone Ita over the Coral Sea on April 14 at 1050 UTC. Heavy rainfall appears in red at 1.4 inches per hour.

Credit: NRL/NASA/JAXA

NASA and the Japan Aerospace Exploration Agency's Tropical Rainfall Measuring Mission (TRMM) satellite's Precipitation Radar instrument gathered rainfall data from Ita when it flew overhead on April 14. That rainfall data was combined with infrared data of Ita's clouds from Japan's MTSAT-2 satellite.

The image taken on April 14 at 1050 UTC/6:50 a.m. EDT showed rain fall rates of up to 1.4 inches/35.5 mm per hour falling southeast of Ita's elongated center.

After Tropical cyclone Ita made landfall on April 11, it continued tracking over land on the eastern Cape York Peninsula of Queensland, Australia where it weakened to a tropical storm. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA's Terra satellite captured an infrared image of Ita on April 12 at 1225 UTC/8:25 a.m. EDT. The MODIS image showed very high, powerful thunderstorms with very cold cloud top temperatures were south of the center of circulation. The thick band of thunderstorms had cloud top temperatures that were as cold as -80F/-62.2C. Those thunderstorms had the potential for heavy rainfall.

According to the Brisbane Times, Ita did not cause any loss of life, but did damage agriculture. Ita reportedly destroyed banana crops and flattened cane fields. Flooding from heavy rainfall also cut off the Bruce Highway, Queensland's main highway.

On April 12 at 1200 UTC (8 a.m. EDT U.S. and April 13 at 2:00 a.m. local time) the Australian Bureau of Meteorology (ABM) noted that a Cyclone Warning remained in effect for coastal areas from Cape Tribulation to St. Lawrence. A Cyclone Watch remained in effect for coastal areas from St. Lawrence to Yeppoon. Heavy rainfall, flash flooding, gale-force winds and rough surf can be expected in the warning area. ABM warned that abnormally high tides were expected between Innisfail and Townsville.

On April 12, the Joint Typhoon Warning Center (JTWC) reported animated multispectral satellite imagery revealed that Ita's structure remained well-defined, even over land. Radar imagery from Cairns showed strong bands of thunderstorms along the eastern quadrant of the storm.

On April 12 at 0900 UTC/5 a.m. EDT, Tropical Storm Ita had maximum sustained winds near 50 knots/57.5 mph/92.6 kph. It was centered near 17.0 south latitude and 145.5 east longitude, about 31 nautical miles/35.7 miles/57.4 km west-northwest of Cairns, Queensland. Tropical cyclone Ita has tracked south-southeastward at 6 knots/6.9 miles/11.1 kph.

By April 13 at 12:06 UTC/7 a.m. local time Monday/8 p.m. EDT/U.S., Ita's maximum sustained winds dropped to 45 knots/51.7 mph/83.3 kph. Tropical Cyclone Ita was located off the central Queensland coast near latitude 22.0 south longitude 152.2 east, which is about 121.2 miles/195 km northeast of Yeppoon and 142.9 miles/230 km north northeast of Gladstone.

Satellite imagery showed that the bulk of the convection and thunderstorms associated with Ita were being blown to the south of the center because of strong northwesterly wind shear.

The JTWC's final warning on Ita was issued on April 14 at 0900 UTC/5 a.m. EDT when Ita was back over the Coral Sea. At that time, Ita's maximum sustained winds were down to 40 knots/46.0 mph/74.0 kph. It was centered near 23.7 north latitude and 155.1 east longitude, about 299.2 miles/481.5 km north-northeast of Brisbane, Queensland, Australia. Tropical Storm Ita was moving to the east-southeast at 23 knots/26.4 mph/42.6 kph. All warnings in Queensland were canceled.

JTWC forecasters using animated multispectral satellite imagery noted that Ita was quickly becoming extra-tropical. Ita was embedded in the mid-latitude westerly winds and as a result of that its circulation was starting to stretch out. Strong vertical wind shear was also pushing the strongest thunderstorms to the southeast of the center, and Ita had began taking on frontal characteristics.

JTWC forecasters expect that the vertical wind shear from the westerly winds will speed up the transition into an extra-tropical storm, and by April 15, Ita is expected to be fully extra-tropical.

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov

Further reports about: EDT NASA Radar atmosphere circulation clouds observations satellite

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>