Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three NASA Satellites Get Awesome Views of Super-Typhoon Choi-Wan

16.09.2009
NASA's Aqua, CloudSat and the Tropical Rainfall Measuring Mission (TRMM) captured stunning satellite images and different views of Super Typhoon Choi-Wan this week. Aqua provided cloud temperatures, CloudSat provided a side look into the storm at convection, precipitation and hot towers, and TRMM provided a look at the extent and intensity of rainfall in Choi-Wan.

NASA's Aqua satellite flew over Choi-Wan on September 15 at 1:30 p.m. local time, and captured an infrared image of the storm using the Atmospheric Infrared Sounder (AIRS) instrument. The infrared instrument provides valuable data on a tropical cyclone's cloud top temperatures.

They're important because they tell forecasters how high thunderstorms are, and the higher the thunderstorm, the more powerful it is, and the data helped forecasters see Choi-Wan's cloud tops were as cold as or colder than minus 63 degrees Fahrenheit (F).

AIRS infrared images depict different cloud temperatures in purple and blue. Those cloud that appear in purple on AIRS imagery have temperatures as cold as or colder than 220 degrees Kelvin or minus 63 degrees Fahrenheit (F). The blue areas are around 240 degrees Kelvin, or minus 27F. The colder the clouds are, the higher they are, and the more powerful the thunderstorms are that make up the cyclone. Areas that are false colored as purple, are where meteorologists would also find the "hot tower" clouds that the TRMM and CloudSat satellites see. In fact, in Choi-Wan, CloudSat identified several hot towers.

A hot tower is a tropical cumulonimbus cloud that penetrates the tropopause, i.e. it reaches out of the lowest layer of the atmosphere, the troposphere, into the stratosphere. In the tropics, the tropopause typically lies at least 15 kilometers (over 9 miles high) above sea level. These towers are called "hot" because they rise high due to the large amount of latent heat released as water vapor condenses into liquid.

NASA's CloudSat satellite completed an eye overpass of Super Typhoon Choi-Wan in the Western Pacific Ocean on September 15, at 0352Z (Sept. 14 at 11:52 p.m.). The CloudSat overpass shows the vertical cross section right through the center of the storm. The eye center is free of cirrus clouds with eye wall edges sloping outwards towards the top of the storm and with hot towers on both sides.

Natalie D. Tourville, of the Atmospheric Science Department at Colorado State University Fort Collins, Colo. is a member of the CloudSat team. Tourville said, "The storm has a well developed, fully enclosed circular eye wall (red circle in the image) around the eye center with intense convection and precipitation (orange and red reflectivities) extending outwards. The Aqua Infrared (AIRS) depicts cloud cover throughout the overpass but the CloudSat image reveals moats (convection free areas) containing a thick cirrus canopy between the spiral rain bands."

This is one a few inner eye images CloudSat has managed to capture of a Category 5 tropical cyclone.

Data from TRMM over flights are used in making the rainfall analysis at NASA's Goddard Space Flight Center in Greenbelt Md. The rainfall analysis showed that Choi-Wan is a large and well-organized. TRMM's Microwave Imager and Precipitation Radar instruments revealed that Choi-Wan has bands of heavy rainfall.

NASA's TRMM satellite captured an image of Choi-Wan's rainfall on September 13, as it was approaching Super Typhoon status. Rainfall in some areas exceeded 50 mm/hr, that's almost 2 inches per hour!

NASA satellites provide daily information to the National Hurricane Center, the Central Pacific Hurricane Center, and the U.S. Navy's Joint Typhoon Warning Center, all of whom forecast tropical cyclones.

For more information and updates about Choi-Wan's intensity and status, please visit: http://www.nasa.gov/mission_pages/hurricanes/archives/2009/h2009_Choi-Wan.html.

Text credit: Rob Gutro, NASA/Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2009/h2009_Choi-Wan.html

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>