Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM Satellite Sees Tropical Storm Lua's Rainfall

15.03.2012
A tropical storm called Lua formed in the Indian Ocean off Australia's northwestern coast on March 13, 2012. NASA's TRMM satellite passed over Lua and observed moderate rainfall and strong towering thunderstorms within on March 13. By March 14, it was turning back toward Australia and storm warnings had been posted.

The area of Australia where Cyclone Lua is located is sparsely populated, but Lua caused the shutdown of over one quarter of the country's crude oil production.


The area covered by TRMM's Precipitation Radar on March 13, 2012 showed thunderstorm towers in feeder (thunderstorm) bands located to the southwest and northeast of Cyclone Lua's center reached heights of almost 15km (9.3 miles), indicating strong thunderstorms.
Credit: NASA/SSAI, Hal Pierce

The Tropical Rainfall Measuring Mission (TRMM) satellite flew over that area on March 13, 2012 at 1622 UTC (12:22 p.m. EDT). A rainfall analysis was conducted at NASA's Goddard Space Flight Center in Greenbelt, Md. using TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) instruments.

It was overlaid on an enhanced infrared image from TRMM's Visible and InfraRed Scanner (VIRS) and showed that rainfall intensity was mainly in the moderate range of 20 to 30 mm/hr (~0.8 to 1.2 inches/hr). The area covered by TRMM's Precipitation Radar (PR) did not include Lua's center of circulation but storm towers in feeder bands southwest and northeast of the storm reached to heights of almost 15 km (9.3 miles).

Lua is predicted to circle back toward the northwestern coast of Australia and attain minimal hurricane force winds on March 15, 2012.

On March 14 at 1500 UTC (11 a.m. EDT), Tropical Storm Lua's maximum sustained winds were near 50 knots (57.5 mph/92.6 kph). It was located about 425 nautical miles (489 miles/787 km) northwest of Port Hedland, Australia. It was centered near 15.6 South and 112.9 East. Lua is moving to the northeast near 5 knots (5.7 mph/9.3 kph) but is expected to turn to the southeast and head toward land.

Infrared satellite imagery shows that the strongest convection (rising air that forms thunderstorms that make up the cyclone) is consolidating and strengthening. There is also some drier air moving into the storm's center and easterly vertical wind shear has increased to around 20 knots (23 mph/37.0). Both of those factors are limiting the storm's ability to intensify more. The wind shear is forecast to weaken over the next day, allowing Cyclone Lua to strengthen before it makes landfall.

Forecasters at the Joint Typhoon Warning Center expect the storm to reach peak wind speeds of up to 90 knots (103 mph/168 kph) before landfall and hold together inland as a tropical cyclone all the way to the Gibson Desert.

Currently, communities in Western Australia's Pilbara and Kimberley regions are on alert. Cyclone Lua has now prompted a Cyclone Watch from Cape Leveque to Mardie, Western Australia. According to the latest forecast from the Joint Typhoon Warning Center, Cyclone Lua is moving north, but will turn to the southeast and strengthen into a cyclone before making landfall north of Port Hedland on Friday, March 16.

Text Credit: Hal Pierce/Rob Gutro
SSAI/NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012_Lua.html

More articles from Earth Sciences:

nachricht NASA balloon mission captures electric blue clouds
24.09.2018 | NASA/Goddard Space Flight Center

nachricht 558 million-year-old fat reveals earliest known animal
21.09.2018 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>