Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA 'Fire Towers' in Space Watch for Wildfires on the Rise

12.08.2013
The Black Forest wildfire this June was one of the most destructive in Colorado history, in terms of homes lost. It started close to houses and quickly spread through the ponderosa pine canopies on the rolling hills near Colorado Springs. The wildfire destroyed 500 homes in the first 48 hours and killed two people.

Hot, dry and windy weather played a role in that wildfire, said Don Smurthwaite, spokesperson with the National Interagency Fire Center (NIFC) in Boise, Idaho.

"Fire seasons are getting longer, western regions are getting drier, and more people are living closer to fire-prone areas."

Fire scientists have observed those conditions becoming more prevalent across the United States.

As the western United States enters what is typically the most active time of its fire season, scientists, firefighters and residents are keeping close watch on what's burning – not just this year, but over the long term. As temperatures warm and weather patterns change, scientists from NASA, universities and other government agencies are putting their satellite observation and computer modeling capabilities to work. They are grappling with what the future landscape of fire will look like in the American West.

"Over the last 30 years we have seen an increase in hot and dry conditions that promote fire activity," said Doug Morton, a scientist at NASA's Goddard Space Flight Center, Greenbelt, Md. "And across the western U.S. and Alaska, satellites show an increase in the area that burns each year over that same time period."

As of Aug. 8 this year, wildfires have burned more than 2.5 million acres in the United States. Large wildfires are mainly driven by natural factors including the availability of fuel (vegetation), wind, and ignition sources from lightning and humans.

Fire Monitoring from Space

For more than a decade, instruments on Terra and Aqua, two of NASA’s flagship Earth-observing satellites, have scanned the surface of our planet for fires. An instrument on both satellites, the Moderate Resolution Imaging Spectroradiometer (MODIS), has revolutionized what scientists know about fire’s role in land cover change, ecosystem processes and the global carbon cycle by allowing researchers to map characteristics of the global distribution of fires in remarkable detail.

Circling the globe every 99 minutes, the two MODIS sensors provide four daily observations of active fires that are relayed to forest managers worldwide. The coordinates of active fires detected by MODIS are sent by text message, often within an hour after the satellite overpass, so agencies responsible for land management can assess ongoing fire activity and respond accordingly.

The recently launched NASA /NOAA Suomi National Polar-orbiting Partnership (Suomi-NPP) and its Visible Infrared Imaging Radiometer Suite (VIIRS) will continue the measurements from MODIS. The satellite provides two additional daily observations.

Another instrument called the Ozone Mapper Profiler Suite, or OMPS, that flies aboard the Suomi-NPP satellite measures relative aerosol concentrations, such as those generated by wildfires.

The U.S. Forest Service is one of the beneficiaries of NASA's fire detection capability and processing support from Goddard’s Direct Readout Laboratory. The Forest Service Remote Sensing Applications Center (RSAC) in Salt Lake City receives and processes MODIS data and provides derivative fire detection products to users in the United States "We provide this information to national and regional managers so that they have a current picture of ongoing fire activity and its effects (observed fire in

tensity, burned area and smoke extent) which assists in making strategic fire planning and response decisions," said Brad Quayle, a remote sensing specialist with RSCA.

Another tool that fire scientists use to predict where severe burns may occur is called Landfire, short for Landscape Fire and Resources Management Planning Tools project. The project uses data from Landsat satellites, a mission jointly operated by NASA and the U.S. Geological Survey.

Landfire provides maps of the nation's land cover including vegetation type, tree canopy cover and height. Together with weather information, this enables crucial fire behavior predictions to be made. These data feed into decision support systems that guide managers on where and when to deploy valuable firefighting resources and where to focus fire-prevention and recovery efforts.

USGS and the U.S. Forest Service started the program in 2003 after an intense U.S. wildfire season highlighted the need for unbiased information to guide decision makers as they allocate resources. "Fighting fires is a very expensive proposition," said Jim Vogelmann, research ecologist from USGS Earth Resources Observation and Science Center in Sioux Falls, S.D. Fire suppression costs last year topped $1.9 billion.

The first Landfire maps took five years of on-the-ground fieldwork, computer modeling and poring over satellite data to complete. Joshua J. Picotte is a remote sensing specialist with USGS in Sioux Falls. He updates Landfire data maps annually looking at changes in vegetation from previous wildfires, urban development or other disturbances. It takes two years and about 24,000 Landsat scenes to complete the annual U.S. update.

"We use Landsat for our land cover mapping and vegetation characterization efforts," Vogelmann said.

The extensive and free Landsat and MODIS archive also facilitates mapping and analyzing past wildfires. Forest Service and USGS analysts are in the process of mapping the frequency, size and severity of all large fires from 1984 to present. Quayle believes the information from this project, Monitoring Trends in Burn Severity (mtbs.gov), will give scientists a better understanding of how climate change is affecting wildfire in the United States.

2013 and Beyond

The 2013 wildfire season got off to an early start in California and Colorado. Morton said the newest generation of climate models project drier conditions that likely will cause increased fire activity across the United States in coming decades. These changes are likely to come in a number of different forms, including longer fire seasons, larger areas at risk of wildfire, and an increase in the frequency of extreme events—years like 2012 in the western United States. A study published by Morton and colleagues this year suggests that the increase in burned area across the United States may already be underway.

Fire seasons are starting earlier, due to warmer spring temperatures and earlier snow melt, and they are lasting longer into the fall. Snow cover shortens the fire season because dry vegetation is not a factor in fire ignition or progression.

Rain will lead to build-up of grasses that dry out in the summer heat and become fuel for fires. “So while it may be warmer, it is the shift from snow to rain that increases fire risk,” said Jeff Eidenshink, fire science team lead with the USGS EROS facility.

While destructive to property and life, the 14,000-acre Black Forest wildfire in Colorado was relatively small for this year's western wildfire season. According to the NIFC statistics, the West Fork Complex Fire in Colorado burned 109,615 acres, the Colockum Tarps Fire in the southeast region of Washington is at 80,881 acres, and the Moore Creek Fire in Alaska is 157,748 acres.

"A 100,000-acre wildfire used to be unusual, you would see one every few years," said Carl Albury, a contractor with the Forest Service-Remote Sensing and Applications Center in Salt Lake City. "Those type of fires are becoming a yearly occurrence."

NASA recently launched the Landsat 8 and Suomi-NPP satellites, which will provide information on fire fuels, active fires, aerosols and climate: all pieces of the wildfire puzzle.

For NASA's smoke and fires website, visit: http://www.nasa.gov/fires

Rani Gran
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Rani Gran | EurekAlert!
Further information:
http://www.nasa.gov/fires
http://www.nasa.gov/content/goddard/nasa-fire-towers-in-space-watch-for-wildfires-on-the-rise/#.UgVMynf3Mg9

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>