Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is there life on Mars?

11.06.2012
A new study reveals that parts of Mars may have been modified by liquid water in recent geologic times, which might indicate more favourable conditions for life on the planet.
Carried out by researchers from the University of Gothenburg, Sweden, in conjunction with German planetary researchers at Wilhelm’s University in Muenster and the Germany Aerospace Center (DLR) in Berlin, the study have now been published in the prestigious journal ICARUS, the International Journal for Solar System Studies.

The surface of Mars displays a diverse landscape, and a new study shows that large areas of the northern hemisphere have undergone a number of freeze-thaw cycles.

“This process is common in our own Arctic permafrost environments and causes the formation of lobate features on slopes,” says Andreas Johnsson at the University of Gothenburg’s Department of Earth Sciences. “As the Martian landscapes we’re studying feature ground-ice, our interpretation is that liquid water has been available in the ground during thaw periods.”

Gullies formed by water
When the ice melted, the near-surface sediment on the slopes became saturated with the melt water and then slowly began to move downwards on top of the still frozen permafrost table due to gravity.

“You can see these structures in close proximity to what are known as gullies,” says Andreas Johnsson.
The researchers have long suspected that the gullies, which are geologically young landforms, were formed by liquid water.

“Our question was: if liquid water can occur in local niches, predominantly in impact craters, where most of the gullies are to be found, then shouldn’t we see more signs of thawing and the effects of melt water, along the lines of those in our own Arctic environments?”
In the study, which focuses on the northern hemisphere of Mars, the researchers could see lobate features in close proximity to the gullies. Morphologically similar landforms are also to be found in Arctic areas on Earth, and are known as solifluction lobes.

Comparisons with Earth
In the study, the researchers compared Martian landforms with known solifluction landforms in Svalbard.

“Unlike local ice-melting, as suggested by the ravines, the solifluction lobes indicate that there has probably been more widespread thawing of the Martian landscape,” says Andreas Johnsson. “Consequently there must have been liquid water in large areas, which is interesting for our understanding of past climates.”

The results show either that the climate models for Mars must be fine-tuned to include the climatic conditions required by these features, or that there is another factor at play.
Since the Mars Phoenix Lander mission it has been confirmed that the ground contains salts that can affect the freezing point of water on Mars so that it can be liquid even at sub-zero temperatures and low atmospheric pressure.

“We don’t yet know which of these scenarios is more likely − it could be a combination of the two.”
Searching for life on Mars
Transient liquid water is also of considerable interest when looking for favourable environments for life on Mars. Research has shown that organisms can survive for long periods without water in cold environments on Earth, but that there must be access to water at times.
“On Mars, these landforms may suggest that the ice melts during favourable “warm” periods and the ground is temporarily saturated with water before freezing again when a new cold period comes along. This process is probably seasonal and linked to periods when Mars’ polar axis was more tilted. Given the varying climate on Mars, it is possible that these conditions are recurring. It has to be emphasized, however, that process-landform interpretation can be problematic due to convergence, which means that different sets of processes may result in similar-looking landforms. Nevertheless, based on comparative morphology, morphometry relationships and the proximity to gullies make these landforms consistent with solifluction”.

The study has been published in the prestigious journal ICARUS, the International Journal for Solar System Studies.

Bibliographic data
Titel: Periglacial mass-wasting landforms on Mars suggestive of transient liquid water in the recent past: Insights from solifluction lobes on Svalbard
Authors: Johnssona,Reiss,Hauber,Zanetti,Hiesinger,Johanssona,Olvmo
Journal: Icarus, Volume 218, Issue 1

For more information, please contact: Andreas Johnsson, doctoral student in physical geography, Department of Geosciences, University of Gothenburg
Telephone: +46 (0)31 786 2943
Mobile: +46 (0)725 205 088
E-mail: andreasj@gvc.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.sciencedirect.com/science/article/pii/S0019103511005021

More articles from Earth Sciences:

nachricht Research icebreaker Polarstern begins the Antarctic season
09.11.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Far fewer lakes below the East Antarctic Ice Sheet than previously believed
08.11.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>