Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is the Baltic Sea acidifying?

19.09.2018

IOW researcher adapt optical pH measurement method for brackish waters

Great advancement for pH-monitoring in the Baltic Sea: For a better observation of possible acidification trends in brackish waters, Jens Müller, marine chemist at the Leibniz Institute for Baltic Sea Research Warnemünde, for the first time adapted a highly precise optical pH measurement method for the use at low salinities, which until now was only applicable at high salinity levels of the open ocean.


The optical pH measurement method adapted for brackish waters, including a market-ready device ("red box"), was thoroughly field-tested by IOW scientist Jens Müller - here on board the ferry Finnmaid.

IOW / J. Müller

The newly adapted method, for which a market-ready device has already been designed, is therefore highly suitable for routine use within the framework of the Helsinki Commission's (HELCOM) Baltic Sea environmental monitoring. The work was carried out as part of the EU project BONUS PINBAL*.

Excessive anthropogenic CO₂ emissions are not only a problem for the global climate, but also for the oceans: Carbon dioxide dissolves in seawater, forms carbonic acid and thereby releases hydrogen ions, which leads to acidification. Since the beginning of industrialisation, the average pH of the oceans has dropped from 8.2 to around 8.1. Also known as “the other CO₂ problem”, this pH reduction affects almost all biogeochemical processes in the ocean. Mussels, crustaceans and corals, for example, react very sensitively because the formation of their calcareous shells and skeletons is impeded in an acidifying environment.

Although scientists started to investigate ocean acidification about two decades ago, it remains difficult to follow the current dynamics of the phenomenon: Long time series measurements in the open ocean show that the pH value decreases on average by about 0.002 units per year. To detect such small changes, highly accurate measurement methods are required. The optical pH measurement method was established as the de facto standard for this purpose. It is based on the addition of the dye m-cresol purple to the water sample and its pH-dependent colour shift from violet to yellow. The colour can be determined very precisely with a photometer and converted into pH units depending on ambient salinity and temperature.

And what about the Baltic Sea? “We have analysed data from the last 20 years and have not been able to detect a clear acidification trend – a rather remarkable result in view of the already proven acidification of the open ocean,” says Jens Müller from the Leibniz Institute for Baltic Sea Research Warnemünde (IOW), who has focused intensively on the CO₂ system of the Baltic Sea in his doctoral thesis. There are several possible reasons for the observed lack of acidification; the marine chemist points out two as particularly important ones: 1) The data quality is inadequate with regard to measurement precision. 2) There is, in fact, no decreasing pH trend, as acidification is buffered by counteracting processes.

That there are indeed processes in the Baltic Sea that counteract acidification, is evident from extensive analyses of alkalinity, i.e. the acid binding capacity of seawater. Alkalinity has been increasing in the Baltic Sea since 1995, probably due to continental rock weathering, the products of which are washed into the semi-enclosed sea. How long alkalinity will continue to rise and buffer acidification, however, is unknown.

“In order to understand what is happening in the Baltic Sea in terms of pH, it is important to rule out that the detection of acidification simply fails due to methodological shortcomings,” emphasises Jens Müller. Currently, the routine determination of pH in Baltic Sea monitoring is based on glass electrode measurements on individual water samples. The measurement uncertainty of this method is too large for a reliable detection of acidification trends in environments like the Baltic Sea.

Furthermore, Jens Müller stresses that monitoring should be carried out with the highest possible temporal and spatial resolution, using the most accurate method available to ensure that the observation of such a key parameter is always up to date. Müller: “We therefore have adapted the optical pH measurement method, which was previously only applicable at ocean salinities between 20 and 40, in such a way that it is ready for routine monitoring in brackish waters with a lower salinity of 5 to 20.”

To this end, Jens Müller, in cooperation with the Physikalisch-Technische Bundesanstalt (PTB), for the first time matched optical pH measurements in artificial seawater standards with pH measurements according to the primary electrochemical standard method, and systematically characterised the colour-shift behaviour of the indicator dye m-cresol purple for low salinities.

“With the aid of these data, we can now for the first time calibrate pH instruments for the low salinity range of the Baltic Sea and reliably convert the colour of the indicator dye into pH units,” explains Müller. In a final step, the IOW scientist was able to experimentally rule out the possibility that hydrogen sulphide and larger amounts of dissolved organic material, both common in brackish water ecosystems, could interfere with the newly adapted method.

To make the optical pH measurement method fit for the Baltic Sea not only on a chemical level, Jens Müller, together with a marine technology company and further scientific project partners, also developed a field-ready instrument that has already been tried and tested and is now on the market. “Our ‘Red Box’, which contains everything you need for spectrophotometric pH measurements, can easily be installed on any research vessel and can also be deployed autonomously on so-called ‘voluntary observing ships’ (VOS),” says Müller.

VOS are cargo ships that are not primarily used for research, but still carry instruments on board and collect scientific data. “Nothing stands in the way of a routine use of the adapted method for a much more precise, high-resolution and widespread pH monitoring in the Baltic Sea. We therefore are campaigning for it as an official new standard within the framework of HELCOM’s (Helsinki Commission for the Protection of the Baltic Sea) environmental monitoring”, concludes Gregor Rehder, head of the IOW working group “Trace Gas Biogeochemistry” and coordinator of the PINBAL project, on the research results of his former doctoral student and now colleague.

Original BONUS PINBAL* publications regarding the pH measurement in brackish water:
(*short for „Development of a spectrophotometric pH-measurement system for monitoring in the Baltic Sea“, for further information: http://www.bonusportal.org/pinbal)

- Jens D. Müller, Frank Bastkowski, Beatrice Sander, Steffen Seitz, David R. Turner, Andrew G. Dickson, Gregor Rehder (2018): „Metrology for pH Measurements in Brackish Waters – Part 1: Extending Electrochemical pHT Measurements of TRIS Buffers to Salinities 5 – 20“, Front. Mar. Sci. 5:176, doi: 10.3389/fmars.2018.00176

- Jens D. Müller and Gregor Rehder (2018): „Metrology for pH Measurements in Brackish Waters – Part 2: Experimental Characterization of Purified meta-Cresol Purple for Spectrophotometric pHT Measurements“, Front. Mar. Sci. 5:177, doi: 10.3389/fmars.2018.00177

- Jens D. Müller, Bernd Schneider, Steffen Aßmann, Gregor Rehder (2018): „Spectrophotometric pH measurements in the presence of dissolved organic matter and hydrogen sulfide“, Limnol. Oceanogr.: Methods 16, 2018, 68–82, doi: 10.1002/lom3.10227

BONUS PINBAL partners:
- Kongsberg Maritime Contros GmbH, Kiel, Germany
- University of Gothenburg, Sweden
- Institute of Oceanology of Polish Academy of Science, Warsaw, Poland

Press and Public Relations at IOW:
Dr. Kristin Beck | Phone: +49 (0)381 – 5197 135 | kristin.beck@io-warnemuende.de
Dr. Barbara Hentzsch | Phone: +49 (0)381 – 5197 102 | barbara.hentzsch@io-warnemuende.de

IOW is a member of the Leibniz Association with currently 93 research institutes and scientific infrastructure facilities. The focus of the Leibniz Institutes ranges from natural, engineering and environmental sciences to economic, social and space sciences as well as to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 19.100 people, of whom 9.900 are scientists. The total budget of the institutes is 1.9 billion Euros. http://www.leibniz-association.eu)

Wissenschaftliche Ansprechpartner:

Dr. Jens Müller | Tel.: +49 (0)381 – 5197 3458 | jens.mueller@io-warnemuende.de
Prof. Gregor Rehder | Tel.: +49 (0)381 – 5197 336 | gregor.rehder@io-warnemuende.de

Dr. Kristin Beck | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Hundreds of bubble streams link biology, seismology off Washington's coast
22.03.2019 | University of Washington

nachricht Atmospheric scientists reveal the effect of sea-ice loss on Arctic warming
11.03.2019 | Institute of Atmospheric Physics, Chinese Academy of Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>