Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Irrigation's Cooling Effects May Mask Warming--For Now

08.09.2010
If Water Runs Short, Some Regions May Suffer Significantly

Expanded irrigation has made it possible to feed the world’s growing billions—and it may also temporarily be counteracting the effects of climate change in some regions, say scientists in a new study. But some major groundwater aquifers, a source of irrigation water, are projected to dry up in coming decades from continuing overuse, and when they do, people may face the double whammy of food shortages and higher temperatures. A new study in the Journal of Geophysical Research pinpoints where the trouble spots may be.

“Irrigation can have a significant cooling effect on regional temperatures, where people live,” said the study’s lead author, Michael Puma, a hydrologist who works jointly with Columbia University’s Earth Institute and its affiliated NASA Goddard Institute for Space Studies. “An important question for the future is what happens to the climate if the water goes dry and the cooling disappears? How much warming is being hidden by irrigation?”

Scientists generally agree that in the last century, humans have warmed the planet about .7 degrees C (about 1.3 degrees F) by pumping vast amounts of carbon dioxide into the air. How much warmer earth will get depends not only on future carbon emissions but an array of other variables. For instance, earth’s oceans and vegetation have been absorbing a growing share of emissions, but recent studies suggest this uptake may be slowing. This could lead to more carbon dioxide in the air, and accelerated warming. On the other hand, humans are also cooling the planet to some degree, by releasing air-polluting particles that lower temperatures by reflecting the sun’s energy back into space. Pumping of vast amounts of heat-absorbing water onto crops is lowering temperatures in some regions as well, say the authors.

Scientists are just beginning to get a handle on irrigation’s impact. In a hundred years, the amount of irrigated farmland has grown four-fold, now covering an area four times the size of Texas. Puma and his coauthor, Benjamin Cook, a climatologist at Goddard and Columbia’s Lamont-Doherty Earth Observatory, are the first to look at the historic effects of mass watering on climate globally by analyzing temperature, precipitation and irrigation trends in a series of model simulations for the last century. They found that irrigation-linked cooling grew noticeably in the 1950s as irrigation rates exploded, and that more rain is now falling downstream of these heavily watered regions.

In warm, dry regions, irrigation increases the amount of water available for plants to release into the air through a process called evapotranspiration. When the soil is wet, part of the sun’s energy is diverted from warming the soil to vaporizing its moisture, creating a cooling effect. The same process explains why drying off in the sun after a swim at the beach can be so refreshing.

Globally, irrigation’s effect on climate is small—one-tenth of one degree C (about 0.2 degree F). But regionally, the cooling can match or exceed the impacts of greenhouse gases, say the scientists. For example, the study found some of the largest effects in India’s arid Indus River Basin, where irrigation may be cooling the climate up to 3 degrees C, (5.4 degrees F) and up to 1-2 degrees C in other heavily irrigated regions such as California’s Central Valley and parts of China. The study also found as much as .5 degree C cooling in heavily watered regions of Europe, Asia and North America during the summer.

The study suggests also that irrigation may be shaping the climate in other ways, by adding up to a millimeter per day of extra rain downwind of irrigated areas in Europe and parts of Asia. It also suggests that irrigation may be altering the pattern of the Asian monsoon, the rains that feed nearly half of the world’s population. These findings are more uncertain, the authors caution, and will require further research.

“Most previous modeling studies were idealized experiments used to explore potential impacts, but this is a much more realistic simulation of the actual impacts,” said David Lobell, a Stanford University scientist who studies climate impacts on agriculture and was not involved in the study. “Their results show some interesting differences by time period and region that will lead to more research and contribute to more accurate simulations of future climate, particularly in agricultural areas.”

Irrigation has increased because it boosts crop yields, supporting many millions of small farmers, said Upmanu Lall, head of the Columbia Water Center at the Earth Institute. But concern is growing that groundwater supplies in India and China may not keep up. “Near term and future climate predictions are essential for anticipating climate shocks and improving food security,” he said. “The study points to the importance of including irrigation in regional and global climate models so that we can anticipate precipitation and temperature impacts, and better manage our land, water and food in stressed environments.”

Kim Martineau | EurekAlert!
Further information:
http://www.earth.columbia.edu/articles/view/2726
http://www.ldeo.columbia.edu

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>