Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How do Landslides control the weathering of rocks?

01.12.2015

Chemical weathering in mountains depends on the process of erosion.

Chemical weathering of rocks over geological time scales is an important control on the stability of the climate. This weathering is, in turn, highly dependent on the mechanical erosion processes in the river catchments where it occurs.


„Water flowing from the base of a landslide deposit, Gaunt Creek, Western Southern Alps of New Zealand “ (Foto: N. Hovius, GFZ)

Very high erosion rates in active mountain ranges, however, produce such large amounts of eroded rock and sediment that weathering cannot keep pace with erosion. This seemingly straightforward relationship is now put into question by a team of geoscientists from France and Germany.

In the Southern Alps of New Zealand, they found that landslides, despite only affecting a small part of the landscape, accelerate the weathering of the eroded material they create enormously. (current online edition, Nature Geoscience, 30.11.2015)

The researchers examined the relationship between landslides and their weathering impact with geochemical methods; they sampled a range of water sources from the study area, comparing leachate from the base of landslide deposits, streams from small catchments with no landsliding, and large rivers draining hundreds of square kilometres.

The study area in New Zealand is characterized by heavy rainfall and large earthquakes, which both act to generate bedrock landslides. The geoscientists discovered a strong correlation between the dissolved solutes in the sampled waters and the occurrence of landslides.

The ratio of Sodium to Calcium, for example, allowed clear distinction to be drawn between the sources, including distinguishing between water from landslides, deeper groundwater, or from hydrothermal springs.

“Over the whole range of scales, from a single hillslope to an entire mountain belt, the weathering of rocks is reflected in the pattern of the dissolved solutes of the surface water” explains Robert Emberson from the GFZ German Research Centre for Geosciences.

This systematic pattern is directly linked to the areas of landsclides.We find that systematic patterns in surface water chemistry are strongly associated with landslide occurrence at scales, “The impact on weathering from landslides that occurred even several decades ago is still clearly observed in the samples we collect today”, says GFZ scientist Emberson.

Although landslides and the mechanical erosion they cause, only affect small parts of the landscape at any given time, they create massive amounts of fresh mineral surfaces: every single piece of rock in the landslide deposit offers a surface where the water that seeps in can stimulate chemical processes.

Since the water does not run off at the surface but percolates slowly through the rock debris, it creates ideal conditions for rapid chemical weathering. Chemical weathering thus is controlled by landslides in active mountain belts.

The possible impact of this effect on the global climate remains to be investigated.
Robert Emberson, Niels Hovius, Albert Galy and Odin Marc: “Chemical weathering in active mountain belts controlled by stochastic bedrock landsliding”, Nature Geoscience, advance online publication, 30.11.2015, Doi: 10.1038/NEO2600

Dipl.Met. Franz Ossing | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ
Further information:
http://www.gfz-potsdam.de/

More articles from Earth Sciences:

nachricht Time To Say Goodbye: The MOSAiC floe’s days are numbered
31.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Alaskan seismometers record the northern lights
30.07.2020 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Time To Say Goodbye: The MOSAiC floe’s days are numbered

31.07.2020 | Earth Sciences

Scientists find new way to kill tuberculosis

31.07.2020 | Life Sciences

Spin, spin, spin: researchers enhance electron spin longevity

31.07.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>