Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How do Landslides control the weathering of rocks?

01.12.2015

Chemical weathering in mountains depends on the process of erosion.

Chemical weathering of rocks over geological time scales is an important control on the stability of the climate. This weathering is, in turn, highly dependent on the mechanical erosion processes in the river catchments where it occurs.


„Water flowing from the base of a landslide deposit, Gaunt Creek, Western Southern Alps of New Zealand “ (Foto: N. Hovius, GFZ)

Very high erosion rates in active mountain ranges, however, produce such large amounts of eroded rock and sediment that weathering cannot keep pace with erosion. This seemingly straightforward relationship is now put into question by a team of geoscientists from France and Germany.

In the Southern Alps of New Zealand, they found that landslides, despite only affecting a small part of the landscape, accelerate the weathering of the eroded material they create enormously. (current online edition, Nature Geoscience, 30.11.2015)

The researchers examined the relationship between landslides and their weathering impact with geochemical methods; they sampled a range of water sources from the study area, comparing leachate from the base of landslide deposits, streams from small catchments with no landsliding, and large rivers draining hundreds of square kilometres.

The study area in New Zealand is characterized by heavy rainfall and large earthquakes, which both act to generate bedrock landslides. The geoscientists discovered a strong correlation between the dissolved solutes in the sampled waters and the occurrence of landslides.

The ratio of Sodium to Calcium, for example, allowed clear distinction to be drawn between the sources, including distinguishing between water from landslides, deeper groundwater, or from hydrothermal springs.

“Over the whole range of scales, from a single hillslope to an entire mountain belt, the weathering of rocks is reflected in the pattern of the dissolved solutes of the surface water” explains Robert Emberson from the GFZ German Research Centre for Geosciences.

This systematic pattern is directly linked to the areas of landsclides.We find that systematic patterns in surface water chemistry are strongly associated with landslide occurrence at scales, “The impact on weathering from landslides that occurred even several decades ago is still clearly observed in the samples we collect today”, says GFZ scientist Emberson.

Although landslides and the mechanical erosion they cause, only affect small parts of the landscape at any given time, they create massive amounts of fresh mineral surfaces: every single piece of rock in the landslide deposit offers a surface where the water that seeps in can stimulate chemical processes.

Since the water does not run off at the surface but percolates slowly through the rock debris, it creates ideal conditions for rapid chemical weathering. Chemical weathering thus is controlled by landslides in active mountain belts.

The possible impact of this effect on the global climate remains to be investigated.
Robert Emberson, Niels Hovius, Albert Galy and Odin Marc: “Chemical weathering in active mountain belts controlled by stochastic bedrock landsliding”, Nature Geoscience, advance online publication, 30.11.2015, Doi: 10.1038/NEO2600

Dipl.Met. Franz Ossing | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ
Further information:
http://www.gfz-potsdam.de/

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>