Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hearing the Russian Meteor, in America

07.05.2013
How powerful was February’s meteor that crashed into Russia? Strong enough that its explosive entry into our atmosphere was detected almost 6,000 miles away in Lilburn, Ga., by infrasound sensors – a full 10 hours after the meteor’s explosion. A Georgia Tech researcher has modified the signals and made them audible, allowing audiences to “hear” what the meteor’s waves sounded like as they moved around the globe on February 15.

Lilburn is home to one of nearly 400 USArray seismic/infrasound stations in use in the eastern United States. They are part of a large-scale project named “Earthscope,” an initiative funded by the National Science Foundation that studies the Earth’s interior beneath North America.

The stations are mainly deployed to record seismic waves generated from earthquakes, but their sound sensors can record ultra long-period sound waves, also known as infrasound waves.

The human ear cannot hear these infrasound signals. However, by playing the data faster than true speed, Georgia Tech faculty member Zhigang Peng increased the sound waves’ frequency to audible levels. The Incorporated Research Institutions for Seismology's Data Managment Center provided the data.

“The sound started at about 10 hours after the explosion and lasted for another 10 hours in Georgia,” said Peng, an associate professor in the School of Earth and Atmospheric Sciences. He’s confident that the sound is associated with the meteor impact because a slow propagation of the sound waves can be seen across the entire collection of USArray stations, as well as other stations in Alaska and polar regions.

“They are like tsunami waves induced by large earthquakes,” Peng added. “Their traveling speeds are similar, but the infrasound propagates in the atmosphere rather than in deep oceans.”

Scientists believe the meteor was about 55 feet in diameter, weighed more than 7,000 tons and raced through the sky at 40,000 miles an hour. Its energy was estimated at 30 nuclear bombs. More than 1,500 people were hurt.

Using the same sonification process, Peng also converted seismic waves from North Korea’s nuclear test on February 12 and an earthquake in Nevada the next day. Each registered as a 5.1 magnitude event but created different sounds. The measurements were collected by seismic instruments located about 100 to 200 miles from each event. For further comparison, Peng has also created a seismic recording of the meteor impact at a similar distance.

“The initial sound of the nuclear explosion is much stronger, likely due to the efficient generation of compressional wave (P wave) for an explosive source,” said Peng. “In comparison, the earthquake generated stronger shear waves that arrived later than its P wave.”

Peng says the seismic signal from the meteor is relatively small, even after being amplified by 10 times. According to Peng, this is mainly because most of the energy from the meteor explosion propagated as the infrasound displayed in the initial sound clip. Only a very small portion was turned into seimsic waves propagating inside the Earth.

This isn’t the first time Peng has converted seismic data into audible files. He also sonified 2011's historic Tohoku-Oki, Japan, earthquake as it moved through the Earth and around the globe.

The seismic and sound data generated by the meteor impact and other sources can be used to demonstrate their global impact. Scientists are also using them to better understand their source characterizations and how they propagate above and inside the earth.

Jason Maderer | Newswise
Further information:
http://www.gatech.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>