Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geographic analysis offers new insight into coral disease spread

01.08.2011
In the last 30 years, more than 90 percent of the reef-building coral responsible for maintaining major marine habitats and providing a natural barrier against hurricanes in the Caribbean has disappeared because of a disease of unknown origin.

Now a University of Florida geographer and his colleagues applied Geographic Information Systems, known as GIS — as well as software previously used to examine human illness — to show where clusters of diseased coral exist. Their findings, published this month in the journal PLoS One, may help scientists derive better hypotheses to determine what contributes to coral disintegration.

“What you’ll find is that spatial techniques have been used relatively little in the coral research community,” said paper co-author Jason Blackburn, a UF professor of geography and member of UF’s Emerging Pathogens Institute. “With these methods, we gain a better understanding of the disease’s distribution across the reef.”

Microbiologists and toxicologists often run laboratory tests on small samples of Acropora species of coral to determine the factors that contribute to white-band disease, known as WBD. It’s visually identified as a white band moving from the base of the coral up, killing the coral tissue as it goes, leaving only the exposed coral skeleton behind.

Laboratory results spur a range of theories of causation — anything from opportunistic pathogens to specific bacterial infections. Other scientists suggest that WBD is not the result of an outside agent, such as bacteria, but rather a stress response from the coral in reaction to changes in the marine environment, such as ocean pollution and rising ocean temperatures due to climate change.

Yet the cause remains unclear. The goal of this current study was to use GIS and spatial analysis to search for patterns in a WBD outbreak that might point to a mode of transmission or cause, Blackburn said.

“What we wanted to test is how much data scientists should gather to get the full picture of disease,” he said. “What we found was that colony-level sampling, where individual Acropora colonies are counted and checked for disease, can show a far different picture of white-band disease than where only presence/absence of coral and disease are mapped.”

The researchers used data gathered in 2004 from scientists stationed at Buck Island National Monument in the U.S. Virgin Islands. Rather than determining only whether coral was affected by WBD, samplers at the station counted the individual number of healthy and non-healthy coral colonies. University researchers were then able to use this information in the Disease Mapping and Analysis Program, known as DMAP. The free software, designed by the University of Iowa initially to study Sudden-Infant Death Syndrome, was used to create maps of WBD prevalence and to locate areas with significant disease clustering.

“While the focus of our study was on a specific white-band disease outbreak, our methods could be used to determine if there’s a spatial component to just about any type of situation that might be present in an underlying population,” said Jennifer Lentz, a Louisiana State University graduate student who is lead author on the paper. “For example, you could use these same techniques to determine whether people with cancer are clustered in a given geographical area, and if so is there something about those locations that might be contributing to the increased prevalence of cancer.”

The researchers determined that 3 percent of the Acropora coral around Buck Island had WBD. They also found the locations of significant disease clusters, information scientists can then use to narrow where they should take samples for further laboratory tests. This is the first of several studies established by the researchers exploring which types of spatial analysis are the most appropriate for various types of coral data from the Caribbean.

For thousands of years, Acropora was the predominant coral in the Caribbean, but more than three decades of disease have destroyed the species ability to survive, forcing marine life out of their coral habitats, which exposes them to attack by predators.

“When these structures are gone, certain fish species have nowhere to go,” said Lentz. “Whole marine communities start to collapse.”

Writer
Claudia Adrien, c.adrien@epi.ufl.edu
Source
Jason Blackburn, jkblackburn@ufl.edu, 352-273-9374
Source
Jennifer Lentz, jlentz1@lsu.edu, 225-578-6308

Jason Blackburn | EurekAlert!
Further information:
http://www.ufl.edu

Further reports about: Blackburn GIS PLoS One WBD bacterial infection ocean temperature tropical Caribbean

More articles from Earth Sciences:

nachricht 558 million-year-old fat reveals earliest known animal
21.09.2018 | Max-Planck-Institut für Biogeochemie

nachricht Glacial engineering could limit sea-level rise, if we get our emissions under control
20.09.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>