Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gas hydrate breakdown unlikely to cause massive greenhouse gas release

10.02.2017

The breakdown of methane hydrates due to warming climate is unlikely to lead to massive amounts of methane being released to the atmosphere, according to a recent interpretive review of scientific literature performed by the U.S. Geological Survey and the University of Rochester.

Methane hydrate, which is also referred to as gas hydrate, is a naturally-occurring, ice-like form of methane and water that is stable within a narrow range of pressure and temperature conditions. These conditions are mostly found in undersea sediments at water depths greater than 1000 to 1650 ft and in and beneath permafrost (permanently frozen ground) at high latitudes.


Gas hydrate (white, ice-like material) under authigenic carbonate rock that is encrusted with deep-sea chemosynthetic mussels and other organisms on the seafloor of the northern Gulf of Mexico at 966 m (~3170 ft) water depth. Although gas hydrate that forms on the seafloor is not an important component of the global gas hydrate inventory, deposits such as these demonstrate that methane and other gases cross the seafloor and enter the ocean.

Photograph was taken by the Deep Discoverer remotely operated vehicle in April 2014 and is courtesy of the National Oceanic and Atmospheric Administration's Ocean Exploration and Research Program.

Methane hydrates are distinct from conventional natural gas, shale gas, and coalbed methane reservoirs and are not currently exploited for energy production, either in the United States or the rest of the world.

On a global scale, gas hydrate deposits store enormous amounts of methane at relatively shallow depths, making them particularly susceptible to the changes in temperature that accompany climate change. Methane itself is also a potent greenhouse gas, and some researchers have suggested that methane released by the breakdown of gas hydrate during past climate events may have exacerbated global warming.

The new review concludes that current warming of ocean waters is likely causing gas hydrate deposits to break down at some locations. However, not only are the annual emissions of methane to the ocean from degrading gas hydrates far smaller than greenhouse gas emissions to the atmosphere from human activities, but most of the methane released by gas hydrates never reaches the atmosphere. Instead, the methane often remains in the undersea sediments, dissolves in the ocean, or is converted to carbon dioxide by microbes in the sediments or water column.

The review pays particular attention to gas hydrates beneath the Arctic Ocean, where some studies have observed elevated rates of methane transfer between the ocean and the atmosphere. As noted by the authors, the methane being emitted to the atmosphere in the Arctic Ocean has not been directly traced to the breakdown of gas hydrate in response to recent climate change, nor as a consequence of longer-term warming since the end of the last Ice Age.

"Our review is the culmination of nearly a decade of original research by the USGS, my coauthor Professor John Kessler at the University of Rochester, and many other groups in the community," said USGS geophysicist Carolyn Ruppel, who is the paper's lead author and oversees the USGS Gas Hydrates Project. "After so many years spent determining where gas hydrates are breaking down and measuring methane flux at the sea-air interface, we suggest that conclusive evidence for release of hydrate-related methane to the atmosphere is lacking."

Professor Kessler explains that, "Even where we do see slightly elevated emissions of methane at the sea-air interface, our research shows that this methane is rarely attributable to gas hydrate degradation."

The review summarizes how much gas hydrate exists and where it occurs; identifies the technical challenges associated with determining whether atmospheric methane originates with gas hydrate breakdown; and examines the assumptions of the Intergovernmental Panels on Climate Change, which have typically attributed a small amount of annual atmospheric methane emissions to gas hydrate sources.

The review also systematically evaluates different environments to assess the susceptibility of gas hydrates at each location to warming climate and addresses the potential environmental impact of an accidental gas release associated with a hypothetical well producing methane from gas hydrate deposits.

Virginia Burkett, USGS Associate Director for Climate and Land Use Change, noted, "This review paper provides a truly comprehensive synthesis of the knowledge on the interaction of gas hydrates and climate during the contemporary period. The authors' sober, data-driven analyses and conclusions challenge the popular perception that warming climate will lead to a catastrophic release of methane to the atmosphere as a result of gas hydrate breakdown."

###

The paper, "The Interaction of Climate Change and Methane Hydrates," by C. Ruppel and J. Kessler, is published in Reviews of Geophysics and is available here. The USGS and University of Rochester research that contributed to the review was largely supported by the U.S. Department of Energy and the National Science Foundation.

More information about the University of Rochester's Dept. of Earth and Environmental Sciences is available here.

The USGS Gas Hydrates Project has been advancing understanding of U.S. and international gas hydrates science for over two decades. The Project focuses on natural gas hydrates and their potential as an energy resource, interaction with the climate system, and possible association with geohazards such as submarine landslides. In the last decade, the group has participated in energy resource studies on the Alaskan North Slope and in the Gulf of Mexico, Indian Ocean, and other locations. Studies of climate-hydrate interactions have been carried out in the Beaufort Sea, on the U.S. Atlantic margin, and at international sites.

Media Contact

Alex Demas
apdemas@usgs.gov
703-648-4421

 @USGS

http://www.usgs.gov 

Alex Demas | EurekAlert!

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>