Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frictional Heat Powers Hydrothermal Activity on Enceladus

23.11.2017

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that the moon has a porous core that allows water from the overlying ocean to seep in, where the tidal friction exerted on the rocks heats it. This shows a computer simulation based on observations from the European-American Cassini-Huygens mission.


Surface, ocean and core of Saturn's moon Enceladus. Computer simulation shows how the icy moon heats water in a porous rock core.

Source: Surface – NASA/JPL-Caltech/Space Science Institute; Core – Choblet et al (2017); Graphic composition – ESA

It also offers among others an answer to the long-standing question of where the energy that can support water in liquid form on the small, cryovulcanic moon far from the sun comes from. The Heidelberg University research group led by planetary scientist Assistant Professor Dr Frank Postberg participated in the investigation.

In 2015, the researchers had already shown that there must be hydrothermal activity on Saturn's moon. Icy volcanoes on Enceladus launch huge jets of gas and icy grains that contain fine particles of rock into space. A detector on the Cassini space probe was able to measure these particles. They originate on the seafloor more than 50,000 metres below the moon's ice shell, which ranges in thickness from three to 35 kilometres.

Using computer simulations and laboratory experiments, the scientists discovered signs that deep below the rock and the water interact – at temperatures of a least 90 degrees Celsius. But where does the energy for the hydrothermal systems that drive the transport of matter come from? And how exactly do the grains of rock get to the surface of the icy moon?

The current studies under the direction of the University of Nantes (France) offer an explanation. According to Dr Postberg, the rock core of Enceladus is probably porous, which is why the water from the overlying ocean is able to deeply permeate it. At the same time, strong tidal forces from Saturn affect the “loose” rock in the moon's core.

The new computer simulations show that the frictional heat is transferred very efficiently to the water circulating through the core, heating it to more than 90 degrees Celsius. This water dissolves some constituents of the rocky material. At certain hotspots, the hydrothermal fluids vent back into the ocean. Due to the cooling dissolved material now partially precipitates as fine particles, which are carried by the warm water to the ocean's surface. The hotspots are located primarily at the poles of Enceladus.

The ascending hydrothermal fluids probably trigger local melting in the ice layer of the polar region. According to Dr Postberg, this explains why the ice layer at the poles is considerably thinner than at the equator – three to ten kilometres versus 35 kilometres. “At the south pole, the water can even rise through fissures almost to the moon's surface.

There, the microscopically small grains of rock from the core are catapulted along with ice particles into space, where they were measured by the instruments on the Cassini space probe,” explained the Heidelberg planetary scientist. The study also showed that only this heat source in the core can keep the overlying ocean water from freezing. Without it, the ocean would completely freeze in less than 30 million years. Dr Postberg conducts research at the Klaus Tschira Laboratory for Cosmochemistry. The laboratory ist part of the Institute of Earth Sciences at Heidelberg University. It is funded by the Klaus Tschira Foundation.

The aim of the Cassini-Huygens mission, a joint project of NASA, ESA, and Italy's ASI space agency that began in 1997, was to gain new insights into the gas planet Saturn and its moons. The Cassini space probe began orbiting Saturn in 2004. The mission concluded in September of this year when the probe entered Saturn's atmosphere. The latest research results were published in the journal “Nature Astronomy”.

Original publication:
G. Choblet, G. Tobie, C. Sotin, M. Běhounková, O. Čadek, F. Postberg & O. Souček: Powering prolonged hydrothermal activity inside Enceladus. Nature Astronomy (published online 6 November 2017), doi: 10.1038/s41550-017-0289-8

Contact:
Assistant Professor Dr Frank Postberg
Institute of Earth Sciences
Klaus Tschira Laboratory for Cosmochemistry
Phone +49 6221 54-8209
frank.postberg@geow.uni-heidelberg.de

Communications and Marketing
Press Office
Phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.geow.uni-heidelberg.de/researchgroups/postberg/

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Volcanoes and glaciers combine as powerful methane producers
20.11.2018 | Lancaster University

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>