Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flat Antarctica – Land height could help explain why Antarctica is warming slower than the Arctic

18.05.2017

Temperatures in the Arctic are increasing twice as fast as in the rest of the globe, while the Antarctic is warming at a much slower rate. A new study published in Earth System Dynamics, a journal of the European Geosciences Union, shows that land height could be a “game changer” when it comes to explaining why temperatures are rising at such different rates in the two regions.

Climate models and past-climate studies show that, as the Earth warms in response to an increase in greenhouse gases in the atmosphere, temperatures rise faster at the poles than in other parts of the planet. This is known as polar amplification. But this amplified warming is not the same at both poles.


Antarctica is the highest continent on Earth, with an average elevation of about 2,500m. It is peppered with many mountains and ridges.

Tarun Luthra, distributed via imaggeo.egu.eu

“On average, warming for the entire Antarctic continent has been much slower than Arctic warming so far. Moreover, climate models suggest that, by the end of this century, Antarctica will have warmed less compared to the Arctic,” says Marc Salzmann, a researcher at the Institute for Meteorology, University of Leipzig in Germany.

A possible cause for the accelerated Arctic warming is the melting of the region’s sea ice, which reduces the icy, bright area that can reflect sunlight back out into space, resulting in more solar radiation being absorbed by the dark Arctic waters. Scientists believe this is an important contribution to warming in the region, but it’s not the only one.

Changes to the transport of heat by the Earth’s atmosphere and oceans to the poles have also been suggested as a possible contributor to the steep rise in Arctic temperatures. In addition, the cold temperatures and the way air is mixed close to the surface at the poles mean that the surface has to warm more to radiate additional heat back to space. These effects may not only lead to stronger warming at the north of our planet, but also at the south polar region.

“I wondered why some of the reasons to explain Arctic warming have not yet caused strongly amplified warming in all of Antarctica as well,” says Salzmann, the author of the Earth System Dynamics study. There had to be other factors at play.

“I thought that land height could be a game changer that might help explain why the Arctic has thus far warmed faster than Antarctica,” he says.

With an average elevation of about 2,500 m, Antarctica is the highest continent on Earth, much due to a thick layer of ice covering the bedrock. The continent also has high mountains, such as Mount Vinson, which rises almost 4,900 m above sea level.

To test his idea, Salzmann used a computer model of the Earth system to find out how the climate would react to a doubling of the atmospheric carbon-dioxide concentration. He also ran the same experiment in a flat-Antarctica world, where he artificially decreased the land height over the entire southern continent to one metre, a value similar to the surface height in the Arctic. This allowed him to compare how differently the Earth would react to an increase in greenhouse-gas concentrations in the atmosphere if Antarctica was assumed flat.

The experiments showed that, if Antarctica’s land height is reduced, temperatures in the region respond more strongly to a rise in the concentration of greenhouse gases over the continent. This contributes to an increase in Antarctic warming, which reduces the difference in polar amplification between the Arctic and the Antarctic.

The most significant factor, however, was a change in the way heat is transported in the atmosphere from the equator to the poles in the flat Antarctica world compared to the reference model. “Assuming a flat Antarctica allows for more transport of warm air from lower latitudes,” Salzmann explains. “This is consistent with the existing view that when the altitude of the ice is lowered, it becomes more prone to melting,” Salzmann explains.

In the long term, this could contribute to accelerate Antarctic warming in the real world. As the region warms due to increased greenhouse-gas emissions, ice melts, reducing Antarctica’s elevation over centuries or thousands of years. This, in turn, would contribute to even more warming.

# # #

Please mention the name of the publication (Earth System Dynamics) if reporting on this story and, if reporting online, include a link to the paper (http://www.earth-syst-dynam.net/8/323/2017/ [link active after embargo lifts; embargoed pre-print available at https://www.egu.eu/news/333/flat-antarctica-land-height-could-help-explain-why-a...]) or to the journal website (http://www.earth-system-dynamics.net).

MORE INFORMATION
This research, by Marc Salzmann (Institute for Meteorology, Universität Leipzig, Germany), is presented in the paper ‘The polar amplification asymmetry: Role of antarctic surface height’ to appear in the EGU open access journal Earth System Dynamics on 18 May 2017.

The scientific article is available online, free of charge, from the publication date onwards, at http://www.earth-syst-dynam.net/8/323/2017/ (this URL will redirect to the final, peer-reviewed paper only after the study is published). An embargoed pre-print version of the final paper is available for download at https://www.egu.eu/news/333/flat-antarctica-land-height-could-help-explain-why-a... (scroll down to the Media section).

Citation: Salzmann, M.: The polar amplification asymmetry: Role of antarctic surface height, Earth Syst. Dynam., doi:10.5194/esd-8-323-2017, 2017

The European Geosciences Union (www.egu.eu) is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 17 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 13,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The EGU 2017 General Assembly is taking place in Vienna, Austria, from 23 to 28 April 2017. For information about meeting and press registration, please check http://media.egu.eu, or follow the EGU on Twitter (@EuroGeosciences) and Facebook (EuropeanGeosciencesUnion).

If you wish to receive our press releases via email, please use the Press Release Subscription Form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) at least 24 hours in advance of public dissemination.

Earth System Dynamics (ESD, http://www.earth-system-dynamics.net/) is an international scientific journal dedicated to the publication and public discussion of studies that take an interdisciplinary perspective of the functioning of the whole Earth system and global change. The overall behaviour of the Earth system is strongly shaped by the interactions among its various component systems, such as the atmosphere, cryosphere, hydrosphere, oceans, pedosphere, lithosphere, and the inner Earth, but also by life and human activity. ESD solicits contributions that investigate these various interactions and the underlying mechanisms, ways how these can be conceptualised, modelled, and quantified, predictions of the overall system behaviour to global changes, and the impacts for its habitability, humanity, and future Earth system management by human decision making.

LINKS
Scientific paper: http://www.earth-syst-dynam.net/8/323/2017/ (the link will be active after the study is published on 18 May, 2pm; embargoed pre-print available at https://www.egu.eu/news/333/flat-antarctica-land-height-could-help-explain-why-a...)
Journal – Earth System Dynamics: http://www.earth-system-dynamics.net/

CONTACTS
Scientist

Marc Salzmann
Institute for Meteorology
University of Leipzig, Germany
Phone +49 341/97-32932
Email: marc.salzmann@uni-leipzig.de

Press officers

Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Phone: +49-89-2180-6703
Email: media@egu.eu
Twitter: @EuroGeosciences

Universität Leipzig
University Communications
Phone: +49 341 97-35021
Mobile: +49 170 4548700
Email: presse@uni-leipzig.de
Web: www.uni-leipzig.de/kommunikation

Weitere Informationen:

http://www.egu.eu/news/333/flat-antarctica-land-height-could-help-explain-why-an... (HTML version of this release, including the scientific study, a video and photos)

Dr. Bárbara Ferreira | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>