Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New eyes in the sky

11.07.2012
UI researchers develop technique to help pollution forecasters see past clouds
Until now, scientists who study air pollution using satellite imagery have been limited by weather. Clouds, in particular, provide much less information than a sunny day.

University of Iowa scientists have created a technique to help satellites "see" through the clouds and better estimate the concentration of pollutants, such as soot. The finding is important, because, like GPS systems, clouds block remote-sensing satellites' ability to detect, and thus calculate, the concentration of pollution nearer to the ground. This includes particles (commonly known as soot) that reduce air quality and affect weather and climate.

The results of the study are published July 9 in the online early edition of the journal Proceedings of the National Academy of Sciences (PNAS).
This image shows two MODIS-Aqua products for Oct. 17, 2008, over the persistent Southeast Pacific stratocumulus deck, off the coasts of Chile and Peru. UI researchers and their colleagues have developed a new technique to evaluate how aerosol pollutants affect clouds, thereby giving scientists the ability to examine clouds and determine particle concentrations in the atmosphere below. Satellite retrievals courtesy of NASA Goddard Space Flight Center; image courtesy of Pablo Saide, Greg Carmichael, Scott Spak, Matthew Janechek, and Nicholas Thornburg, University of Iowa.

“Particles in the atmosphere (aerosols) interact with clouds changing their properties. With this technique, we can use remote sensing observations from satellites to estimate these cloud properties in order to correct predictions of particle concentrations. This is possible due to a numerical model that describes these aerosol-clouds interactions,” says Pablo Saide, environmental engineering doctoral student and researcher at the UI Center for Global and Regional Research (CGRER).

Scott Spak, co-author and assistant professor of civil and environmental engineering in the UI College of Engineering, adds that the new technique is expected to find immediate application across a wide range of activities. Examples include air quality forecasting, numerical weather prediction, climate projections, oceanic and anthropogenic emissions estimation, and health effects studies.

But the ability to see pollution “through the clouds” is also expected to have “on the ground” health results.

“Unlike previous methods, this technique can directly improve predictions of near-surface, fine-mode aerosols—such as coal-fired electric generating plants and wood-fueled cooking fires—responsible for human health impacts and low-cloud radiative forcing (solar heating),” says Greg Carmichael, co-author, professor of chemical and biochemical engineering, and CGRER co-director. "This technique is also complementary to previous methods used, allowing the observing system to ‘see aerosols’ even under cloudy conditions.”

Here’s how the technique works:
•Existing weather satellites observe warm, single-layer clouds, such as the stratocumulus clouds that form off the west coasts of Africa, North America, and South America. These clouds are thought to be the main factors contributing to climate cooling.

•Researchers calculate the number of droplets in the clouds using the satellite data, which are compared to a model estimate provided by the UI program.

•As airborne particles interact with clouds changing their properties, model estimates of particles are corrected so that the model will generate a better agreement with the satellite number of droplets.

•Particles interacting with clouds are usually below clouds, thus, in some cases, the model corrections can be attributed to manmade emissions.

The researchers conducted their study using National Science Foundation (NSF) aircraft measurements to make simultaneous cloud and particle observations, which verified satellite observations and the mathematical formulas used to determine the pollution concentrations in the air.

All three UI researchers agree that their new technique for seeing through clouds to make ground observations is likely to generate growing interest as the need to infer ground air pollution levels, and the need to mitigate the human hazards posed, grows larger.

In addition to UI researchers, paper co-authors include Patrick Minnis of NASA Langley Research Center, Hampton, Va., and Kirk Ayers of Science Systems and Applications Inc., Hampton, Va.

The PNAS article is titled “Improving aerosol distributions below clouds by assimilating satellite-retrieved cloud droplet number.”

The research was funded by NSF and NASA.
Contacts
Gary Galuzzo, University Communication and Marketing, 319-384-0009

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu

Further reports about: GPS system NASA NSF PNAS Science TV Spak environmental engineering

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>