Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploring ocean waters to characterize atmospheric aerosols

31.03.2017

Scientists from the University of Geneva discovered that studying water masses enables them to analyze organic aerosols, which influence cloud formation

Aerosols are collections of fine particles, either biological or of other types, in suspension in a gaseous medium. They play a major role in cloud formation and therefore have a strong impact on climate models. They are however extremely hard to study due to the small size and immense variety of their constituent particles.


Representation of the temperatures on the surface of the Atlantic Ocean near the north-american coast. In blue, the colder bodies of water where biological activity is more important. In yellow, warmer bodies of water where biological activity is weaker. Along the PlanetSolar itinerary, the colored dots represent the concentration of organic aerosols, from blue (light concentration) to red (strong concentration).

Credit: ©UNIGE

But researchers from the University of Geneva (UNIGE), Switzerland, members of the PlanetSolar Deepwater expedition, have now succeeded in linking the composition of marine biological aerosols -- and therefore their influence on the climate -- to that of bodies of water under them within the Atlantic Ocean, thereby paving the way to an indirect study of these aerosols through water analysis. This study, which has been published in Scientific Reports, will contribute to making climate models more accurate.

Aerosols are fine particles in suspension in the air. Over the oceans, some contain organic or biological ingredients (bacteria, degradation products of microscopic algae) which come from sea spray, others are transported in the air (mineral dust, smoke).

They serve as seeds for forming clouds and also reflect light. Their role is extremely important for modelling clouds, and therefore for the climate in general. But due to the small size of the particles and their large quantity, it's difficult to accurately study them. So researchers at the University of Geneva (UNIGE) asked themselves if it would be possible to characterize biological aerosols through the composition of the water whence they come.

"To answer this question, we needed two tools," explains Jérôme Kasparian, Professor in the Department of Applied Physics at the UNIGE Science Faculty. "The first is a detector of fluorescence which we designed, called Biobox, and which enables us to analyse aerosol particles one by one.

The spectrum gives us information on their composition and distinguishes the organic particles, which are fluorescent, from the other particles. Then we needed PlanetSolar." Indeed this research could only be undertaken over a long time period of time without any disturbances of water and air. Only PlanetSolar, a solar boat that navigated remains at sea for three months and produces no emissions, could make it possible.

During the expedition, scientists carried out analysis of the salinity, temperature, dissolved oxygen and the microalgae contained in the various bodies of water in the Atlantic, and then compared this data with that obtained by the Biobox. "And we found that they matched!" exclaims Jérôme Kasparian. The physicists discovered that biological aerosols are related to the temperature and salinity of the sea.

According to previous criteria, water creates large bodies that don't inter-mix, which allows them to be differentiated. Thus, when the characteristics of a water mass were favourable for reproduction of microalgae, researchers noticed that after a certain amount of time, the aerosols detected above this same water mass contained more biological particles. The biological fraction of aerosols is therefore linked to the history of biological activity of bodies of water close to the surface.

"Provided that this is also valid in oceans and seas other than the Atlantic, our research location, our results would allow us to estimate biological aerosols by directly studying the bodies of water, which would simplify aerosol caracterization and make climate models more accurate," adds Kasparian. Difficult to study directly, aerosols are now being studied via the sea, which, unlike aerosols, can easily be analysed by satellites.

Media Contact

Jérôme Kasparian
Jerome.Kasparian@unige.ch
41-223-790-512

 @UNIGEnews

http://www.unige.ch 

Jérôme Kasparian | EurekAlert!

Further reports about: Aerosols PlanetSolar UNIGE atmospheric aerosols climate models microalgae

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>