Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploring ocean waters to characterize atmospheric aerosols

31.03.2017

Scientists from the University of Geneva discovered that studying water masses enables them to analyze organic aerosols, which influence cloud formation

Aerosols are collections of fine particles, either biological or of other types, in suspension in a gaseous medium. They play a major role in cloud formation and therefore have a strong impact on climate models. They are however extremely hard to study due to the small size and immense variety of their constituent particles.


Representation of the temperatures on the surface of the Atlantic Ocean near the north-american coast. In blue, the colder bodies of water where biological activity is more important. In yellow, warmer bodies of water where biological activity is weaker. Along the PlanetSolar itinerary, the colored dots represent the concentration of organic aerosols, from blue (light concentration) to red (strong concentration).

Credit: ©UNIGE

But researchers from the University of Geneva (UNIGE), Switzerland, members of the PlanetSolar Deepwater expedition, have now succeeded in linking the composition of marine biological aerosols -- and therefore their influence on the climate -- to that of bodies of water under them within the Atlantic Ocean, thereby paving the way to an indirect study of these aerosols through water analysis. This study, which has been published in Scientific Reports, will contribute to making climate models more accurate.

Aerosols are fine particles in suspension in the air. Over the oceans, some contain organic or biological ingredients (bacteria, degradation products of microscopic algae) which come from sea spray, others are transported in the air (mineral dust, smoke).

They serve as seeds for forming clouds and also reflect light. Their role is extremely important for modelling clouds, and therefore for the climate in general. But due to the small size of the particles and their large quantity, it's difficult to accurately study them. So researchers at the University of Geneva (UNIGE) asked themselves if it would be possible to characterize biological aerosols through the composition of the water whence they come.

"To answer this question, we needed two tools," explains Jérôme Kasparian, Professor in the Department of Applied Physics at the UNIGE Science Faculty. "The first is a detector of fluorescence which we designed, called Biobox, and which enables us to analyse aerosol particles one by one.

The spectrum gives us information on their composition and distinguishes the organic particles, which are fluorescent, from the other particles. Then we needed PlanetSolar." Indeed this research could only be undertaken over a long time period of time without any disturbances of water and air. Only PlanetSolar, a solar boat that navigated remains at sea for three months and produces no emissions, could make it possible.

During the expedition, scientists carried out analysis of the salinity, temperature, dissolved oxygen and the microalgae contained in the various bodies of water in the Atlantic, and then compared this data with that obtained by the Biobox. "And we found that they matched!" exclaims Jérôme Kasparian. The physicists discovered that biological aerosols are related to the temperature and salinity of the sea.

According to previous criteria, water creates large bodies that don't inter-mix, which allows them to be differentiated. Thus, when the characteristics of a water mass were favourable for reproduction of microalgae, researchers noticed that after a certain amount of time, the aerosols detected above this same water mass contained more biological particles. The biological fraction of aerosols is therefore linked to the history of biological activity of bodies of water close to the surface.

"Provided that this is also valid in oceans and seas other than the Atlantic, our research location, our results would allow us to estimate biological aerosols by directly studying the bodies of water, which would simplify aerosol caracterization and make climate models more accurate," adds Kasparian. Difficult to study directly, aerosols are now being studied via the sea, which, unlike aerosols, can easily be analysed by satellites.

Media Contact

Jérôme Kasparian
Jerome.Kasparian@unige.ch
41-223-790-512

 @UNIGEnews

http://www.unige.ch 

Jérôme Kasparian | EurekAlert!

Further reports about: Aerosols PlanetSolar UNIGE atmospheric aerosols climate models microalgae

More articles from Earth Sciences:

nachricht Wintertime Arctic sea ice growth slows long-term decline: NASA
07.12.2018 | NASA/Goddard Space Flight Center

nachricht Why Tehran Is Sinking Dangerously
06.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>