Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First evidence that dust and sand deposits in China are controlled by rivers

15.10.2013
New research published today in the journal Quaternary Science Reviews has found the first evidence that large rivers control desert sands and dust in Northern China.

Northern China holds some of the world's most significant wind-blown dust deposits, known as loess. The origin of this loess-forming dust and its relationship to sand has previously been the subject of considerable debate.


Northern China holds some of the world's most significant wind-blown dust deposits, known as loess. The origin of this loess-forming dust and its relationship to sand has previously been the subject of considerable debate.

Credit: Royal Holloway University


The results from study showed that the Yellow River transports large quantities of sediment from northern Tibet to the Mu Us desert and further suggests that the river contributes a significant volume of material to the Loess Plateau.

Credit: Royal Holloway University

The team of researchers led by Royal Holloway University, analysed individual grains of fine wind-blown dust deposited in the Chinese Loess Plateau that has formed thick deposits over the past 2.5 million years. As part of this, they also analysed the Mu Us desert in Inner Mongolia and the Yellow River, one of the world's longest rivers, to identify links between the dust deposits and nearby deserts and rivers.

The results showed that the Yellow River transports large quantities of sediment from northern Tibet to the Mu Us desert and further suggests that the river contributes a significant volume of material to the Loess Plateau.

"The Yellow River drains the northeast Tibetan plateau and so the uplift of this region and the development of Yellow River drainage seems to control the large scale dust deposits and sand formation in this part of China," said lead researcher Tom Stevens from the Department of Geography at Royal Holloway.

"Identifying how this dust is formed and controlled is important, since it drives climate change and ocean productivity and impacts human health. Its relationship to the river and Tibet implies strong links between tectonics and climate change. This suggests that global climate change caused by atmospheric dust may be influenced by the uplift of Tibet and changes in major river systems that drain this area."

Tanya Gubbay | EurekAlert!
Further information:
http://www.rhul.ac.uk

More articles from Earth Sciences:

nachricht A Volcanic Binge And Its Frosty Hangover
21.02.2019 | Universität Heidelberg

nachricht Researchers get to the bottom of fairy circles
21.02.2019 | Georg-August-Universität Göttingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>