Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ethanol refining may release more of some pollutants than previously thought

06.05.2015

Ethanol fuel refineries could be releasing much larger amounts of some ozone-forming compounds into the atmosphere than current assessments suggest, according to a new study that found emissions of these chemicals at a major ethanol fuel refinery are many times higher than government estimates.

New airborne measurements downwind from an ethanol fuel refinery in Decatur, Illinois, show that ethanol emissions are 30 times higher than government estimates. The measurements also show emissions of all volatile organic compounds (VOCs), which include ethanol, were five times higher than government numbers, which estimate emissions based on manufacturing information. VOCs and nitrogen oxides react with sunlight to form ground-level ozone, the main component of smog.

If emissions at the more than 200 fuel other ethanol refineries in the U.S. are also being underestimated, these plants could be a higher source of VOC emissions than currently thought, according to the new findings accepted for publication in the Journal of Geophysical Research: Atmospheres, a publication of the American Geophysical Union.

Ethanol, a renewable transportation fuel made from corn, constitutes approximately 10 percent of the fuel used in gasoline vehicles in the U.S., according to the new study. The renewable fuel standard mandating the use of ethanol and other renewable fuels aims to reduce greenhouse gas emissions and petroleum imports, while encouraging development and expansion of the U.S. renewable fuels sector, according to the U.S. Environmental Protection Agency.

The new study is one of the first and most detailed investigations of emissions from ethanol fuel refining, according to its lead author Joost de Gouw, a scientist at the Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder and NOAA's Earth System Research Laboratory in Boulder, Colorado. Information about the refining process is one piece of examining the entire lifecycle of ethanol fuel emissions, from growing the corn used to make the fuel to the effect of emissions on urban air quality, he said.

"Over the past decade, because of the renewable fuel mandate, we have added 10 percent of ethanol to all the gasoline that is sold in the U.S. and so the question is: what does that do to the environment," de Gouw said. "That is a very complicated question and it has many different aspects. One of the aspects is the air-quality implications and, to get at them, we have to know what are the emissions associated with producing ethanol and using ethanol. That is where this study fits in."

To make the measurements they report, de Gouw and his colleagues flew an airplane downwind of an Archer Daniels Midland ethanol refinery, the third largest producer of fuel ethanol in the U.S., and took air-quality readings at three different distances from the plant. The researchers used those to calculate emissions of various gases, including VOCs, nitrogen oxides and sulfur dioxide.

They then compared their findings with government emissions estimates from 2011. Emissions of sulfur dioxide and nitrogen oxides - compounds generated by the coal-burning plant - were in-line with government estimates, but emissions of VOCs, including ethanol, were higher than government estimates. De Gouw said the VOC emissions are likely generated by the refining process, not the coal-burning that powers it.

The researchers also used government estimates and ethanol production numbers from the Renewable Fuels Association to analyze emissions from all fuel ethanol refineries in the U.S. and compare those to emissions from burning ethanol in motor vehicles.

Prevailing estimates had indicated that refining ethanol fuel and burning it in cars and trucks generate equivalent amount of VOCs, including ethanol. But, the new emissions measurements from the Decatur plant show that ethanol emissions from production of one kilogram of ethanol at the refinery are 170 times higher than what comes out of a vehicle burning the same amount of ethanol, de Gouw said. If the Decatur refinery is like most other refineries in the U.S., he added, "the higher emissions of ethanol and VOCs that we calculated from our data would make the refining process a larger source of these gases than burning the ethanol fuel in your car."

"Obviously, this was just one refinery that we looked at, so we'd like to do more and see if these findings are more universal or if this plant was just exceptional," de Gouw added.

The new study points to the need for more measurements of emissions coming from ethanol fuel refineries, said Dylan Millet, an associate professor of atmospheric chemistry at the University of Minnesota in St. Paul. He was not involved with the new research. Additional observational data will help scientists better understand the emissions and their impact on air quality, he said.

"If we are going to accurately assess the air-quality implications of our fuel choices, then these are important emissions to know," Millet said.

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 60,000 members in 139 countries. Join the conversation on Facebook, Twitter, YouTube, and our other social media channels.

Media Contact

Peter Weiss
pweiss@agu.org
202-777-7507

 @theagu

http://www.agu.org 

Peter Weiss | American Geophysical Union

More articles from Earth Sciences:

nachricht Rare Earth Elements in Norwegian Fjords?
06.08.2020 | Jacobs University Bremen gGmbH

nachricht Rock debris protects glaciers from climate change more than previously known
05.08.2020 | Northumbria University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>