Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Curvy Mountain Belts

02.07.2012
Mountain belts on Earth are most commonly formed by collision of one or more tectonic plates.
The process of collision, uplift, and subsequent erosion of long mountain belts often produces profound global effects, including changes in regional and global climates, as well as the formation of important economic resources, including oil and gas reservoirs and ore deposits. Understanding the formation of mountain belts is thus a very important element of earth science research.

One common but poorly understood aspect of mountain belts are the many examples of curved (arcuate) mountain ranges. The Appalachian range in Pennsylvania, the Rocky Mountains in central Montana, the Blue Mountains in Oregon, the Bolivian Andes of South America, and the Cantabrian Arc in Spain and northern Africa are among many examples of noticeably curved mountain belts.
The cause of these curvy mountains is among the oldest topics of research in geology, and there is still extensive debate on what mechanisms are most important for making a curvy mountain range.

A common question is whether these presently curvy mountain ranges were originally straight and then later bent or whether they were uplifted in more or less their present shape.

Another important aspect of the origin of these curved mountain ranges is the thickness of the rock units involved in their formation. Some workers have proposed that these ranges are composed of relatively thin slices of crustal rocks (limited to several kilometers in thickness), while others have argued that at least some of these curvy ranges involve the entire thickness of the lithospheric plates (30 to 100 km thick). One of the most promising ways to answer these questions utilizes comparisons of the orientation of structural features in rocks (fault planes and joints), records of the ancient magnetic field directions found in rocks, and the timing of deformation and uplift of the mountain belts.

An international group of researchers from Spain, Canada, and the United States, led by Dr. Gabriel Gutiérrez-Alonso, have presented a compelling study of one of the best examples of curved mountain ranges: the Cantabrian Arc in Spain and northern Africa. They have compiled an extensive collection of fault and joint orientation data and directions of the ancient geomagnetic field recorded by Paleozoic rocks collected in Spain.

The Cantabrian Arc was formed during the collision of a southern set of continents (Gondwanaland [present day Africa-South America-Australia-India-Antarctica]) with a northern set of continents (Laurentia [present day North America and Eurasia]) to produce the supercontinent Pangea. In a nutshell, their combined study has found that the curved pattern of the Cantabrian Arc was produced by the bending of an originally straight mountain range.

The main line of evidence supporting this view is the patterns of rotation that are obtained from the directions of the ancient geomagnetic field recorded by the rocks of these mountain ranges. Combined with an analysis of the faults and joints in the rocks, and the ages of rocks that have variations in the amount of rotation indicated by the magnetic directions, the age of the bending of the Cantabrian Arc is confined to a relatively narrow window of geological time between 315 and 300 million years ago.

Gutiérrez-Alonso and colleagues compare the age range of this mountain bending event to the ages of igneous activity and uplift of the region and propose that widespread changes in the deeper (mantle) portion of the lithospheric plate in the area are coeval, and likely linked to, the rotation of the Cantabrian Arc to produce its characteristic sharp curviness. Based on this linkage, they propose that this, and perhaps many other, curvy mountain ranges are produced by rotation of entire portions of the lithosphere of tectonic plates, rather than just thin slices of crustal rocks.

This article is online now at www.geosociety.org/gsatoday/archive/22/7/. GSA Today articles are open access online; for a print copy, please contact Kea Giles at kgiles@geosociety.org. Please discuss articles of interest with the authors before publishing stories on their work, and please make reference to GSA Today in articles published.

Buckling an orogen: The Cantabrian Orocline
G. Gutiérrez-Alonso et al., Depto. de Geología, Universidad de Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain. Posted online 27 June 2012; doi: 10.1130/GSATG141A.1.

GSA Today is The Geological Society of America's science and news magazine for members and other earth scientists. Refereed lead science articles present exciting new research or synthesize important issues in a format understandable to all in the earth science community. GSA Today often features a refereed "Groundwork" article — a tightly focused paper on issues of import to earth science policy, planning, funding, or education. All GSA Today articles are open access at www.geosociety.org/pubs/.

The July 2012 GSA Today science article is now online at www.geosociety.org/gsatoday/archive/22/7/

Kea Giles | EurekAlert!
Further information:
http://www.geosociety.org

More articles from Earth Sciences:

nachricht Atmospheric scientists reveal the effect of sea-ice loss on Arctic warming
11.03.2019 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Sensing shakes
11.03.2019 | University of Tokyo

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>