Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Counting on NASA's ICESat-2

29.08.2018

NASA is about to launch the agency's most advanced laser instrument of its kind into space. The Ice, Cloud and land Elevation Satellite-2, or ICESat-2, will provide critical observations of how ice sheets, glaciers and sea ice are changing, leading to insights into how those changes impact people where they live.

Launch is scheduled for Sept. 15, and as we count down the days, we're counting up 10 things you should know about ICESat-2:


The ICESat-2 satellite undergoes tests one last time before it is placed in the rocket. ICESat-2, scheduled to launch Sept. 15, will precisely measure the height of Earth's ice and monitor change.

Credit: USAF 30th Space Wing/Timothy Trenkle

1 Space Laser

There's only one scientific instrument on ICESat-2, but it is a marvel. The Advanced Topographic Laser Altimeter System, or ATLAS, measures height by precisely timing how long it takes individual photons of light from a laser to leave the satellite, bounce off Earth, and return to the satellite. Hundreds of people at NASA's Goddard Space Flight Center in Greenbelt, Maryland, worked to build this smart-car-sized instrument to exacting requirements so that scientists can measure minute changes in our planet's ice.

2 Types of Ice

Not all ice is the same. Land ice, like the ice sheets in Greenland and Antarctica, or glaciers dotting the Himalaya, builds up as snow falls over centuries and forms compacted layers. When it melts, it can flow into the ocean and raise sea level. Sea ice, on the other hand, forms when ocean water freezes. It can last for years, or a single winter. When sea ice disappears, there is no effect on sea level (think of a melting ice cube in your drink), but it can change climate and weather patterns far beyond the poles.

3-Dimensional Earth

ICESat-2 will measure elevation to see how much glaciers, sea ice and ice sheets are rising or falling. NASA's fleet of satellites collect detailed images of our planet that show the changing extent of features like ice sheets and forests, and with ICESat-2's data, scientists can add the third dimension - height - to those portraits of Earth.

4 Seasons, 4 Measurements

ICESat-2's orbit will make 1,387 unique ground tracks around Earth in 91 days - and then start the same ground pattern again at the beginning. This allows the mission to measure the same ground tracks four times a year and scientists to see how glaciers and other frozen features change with the seasons - including over winter.

532 Nanometer Wavelength

The ATLAS instrument will measure ice with a laser that shines at 532 nanometers - a bright green on the visible spectrum. When these laser photons return to the satellite, they pass through a series of filters that block any light that's not exactly at this wavelength. This helps the instrument from being swamped with all the other shades of sunlight naturally reflected from Earth.

6 Laser Beams

While the first ICESat satellite (2003-2009) measured ice with a single laser beam, ICESat-2 splits its laser light into six beams - the better to cover more ground (or ice). The arrangement of the beams into three pairs will also allow scientists to assess the slope of the surface they're measuring.

7 Kilometers per Second

ICESat-2 will zoom above the planet at 7 km per second (4.3 miles per second), completing an orbit around Earth in 90 minutes. The orbits have been set to converge at the 88-degree latitude lines around the poles, to focus the data coverage in the region where scientists expect to see the most change.

800-Picosecond Precision

All of those height measurements result from timing the individual laser photons on their 600-mile roundtrip between the satellite and Earth's surface - a journey that is timed to within 800 picoseconds. That's a precision of less than a billionth of a second. NASA engineers had to custom build a stopwatch-like device, since no existing timers fit the strict requirements.

9 Years of Operation IceBridge

As ICESat-2 measures the poles, it adds to NASA's record of ice heights that started with the first ICESat and continued with Operation IceBridge, an airborne mission that has been flying over the Arctic and Antarctic for nine years. The campaign, which bridges the gap between the two satellite missions, has flown since 2009, taking height measurements and documenting the changing ice.

10,000 pulses a second

ICESat-2's laser will fire 10,000 times in one second. The original ICESat fired 40 times a second. More pulses mean more height data. If ICESat-2 flew over a football field, it would take 130 measurements between end zones; its predecessor, on the other hand, would have taken one measurement in each end zone.

ICESat-2's fast-firing laser, combined with the instrument's timing precision, sensitive photon-detection technology and other features will allow the ICESat-2 mission to measure the average annual change in vast ice sheets down to the width of a pencil.

###

For more information, visit: icesat-2.gsfc.nasa.gov or nasa.gov/icesat-2

By: Kate Ramsayer


NASA's Goddard Space Flight Center, Greenbelt, Md.

Patrick Lynch | EurekAlert!
Further information:
https://www.nasa.gov/feature/goddard/2018/counting-on-nasas-icesat-2

More articles from Earth Sciences:

nachricht Most of Earth's carbon was hidden in the core during its formative years
02.04.2020 | Smithsonian

nachricht A sensational discovery: Traces of rainforests in West Antarctica
02.04.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>