Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change Reducing Ocean’s Carbon Dioxide Uptake

11.07.2011
How deep is the ocean’s capacity to buffer against climate change?

As one of the planet’s largest single carbon absorbers, the ocean takes up roughly one-third of all human carbon emissions, reducing atmospheric carbon dioxide and its associated global changes.

But whether the ocean can continue mopping up human-produced carbon at the same rate is still up in the air. Previous studies on the topic have yielded conflicting results, says University of Wisconsin-Madison assistant professor Galen McKinley.

In a new analysis published online July 10 in Nature Geoscience, McKinley and her colleagues identify a likely source of many of those inconsistencies and provide some of the first observational evidence that climate change is negatively impacting the ocean carbon sink.

“The ocean is taking up less carbon because of the warming caused by the carbon in the atmosphere,” says McKinley, an assistant professor of atmospheric and oceanic sciences and a member of the Center for Climatic Research in the Nelson Institute for Environmental Studies.

The analysis differs from previous studies in its scope across both time and space. One of the biggest challenges in asking how climate is affecting the ocean is simply a lack of data, McKinley says, with available information clustered along shipping lanes and other areas where scientists can take advantage of existing boat traffic. With a dearth of other sampling sites, many studies have simply extrapolated trends from limited areas to broader swaths of the ocean.

McKinley and colleagues at UW-Madison, the Lamont-Doherty Earth Observatory at Columbia University, and the Universite Pierre et Marie Curie in Paris expanded their analysis by combining existing data from a range of years (1981-2009), methodologies, and locations spanning most of the North Atlantic into a single time series for each of three large regions called gyres, defined by distinct physical and biological characteristics.

They found a high degree of natural variability that often masked longer-term patterns of change and could explain why previous conclusions have disagreed. They discovered that apparent trends in ocean carbon uptake are highly dependent on exactly when and where you look – on the 10- to 15-year time scale, even overlapping time intervals sometimes suggested opposite effects.

“Because the ocean is so variable, we need at least 25 years’ worth of data to really see the effect of carbon accumulation in the atmosphere,” she says. “This is a big issue in many branches of climate science – what is natural variability, and what is climate change?”

Working with nearly three decades of data, the researchers were able to cut through the variability and identify underlying trends in the surface CO2 throughout the North Atlantic.

During the past three decades, increases in atmospheric carbon dioxide have largely been matched by corresponding increases in dissolved carbon dioxide in the seawater. The gases equilibrate across the air-water interface, influenced by how much carbon is in the atmosphere and the ocean and how much carbon dioxide the water is able to hold as determined by its water chemistry.

But the researchers found that rising temperatures are slowing the carbon absorption across a large portion of the subtropical North Atlantic. Warmer water cannot hold as much carbon dioxide, so the ocean’s carbon capacity is decreasing as it warms.

In watching for effects of increasing atmospheric carbon on the ocean’s uptake, many people have looked for indications that the carbon content of the ocean is rising faster than that of the atmosphere, McKinley says. However, their new results show that the ocean sink could be weakening even without that visible sign.

“More likely what we’re going to see is that the ocean will keep its equilibration but it doesn’t have to take up as much carbon to do it because it’s getting warmer at the same time,” she says. “We are already seeing this in the North Atlantic subtropical gyre, and this is some of the first evidence for climate damping the ocean’s ability to take up carbon from the atmosphere.”

She stresses the need to improve available datasets and expand this type of analysis to other oceans, which are relatively less-studied than the North Atlantic, to continue to refine carbon uptake trends in different ocean regions. This information will be critical for decision-making, since any decrease in ocean uptake may require greater human efforts to control carbon dioxide levels in the atmosphere.

McKinley’s work on the project was supported by the National Aeronautics and Space Administration.

Jill Sakai, jasakai@wisc.edu, (608) 262-9772

Jill Sakai | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Earth Sciences:

nachricht 558 million-year-old fat reveals earliest known animal
21.09.2018 | Max-Planck-Institut für Biogeochemie

nachricht Glacial engineering could limit sea-level rise, if we get our emissions under control
20.09.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Three NASA missions return first-light data

24.09.2018 | Physics and Astronomy

Brown researchers teach computers to see optical illusions

24.09.2018 | Information Technology

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>