Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boat mooring chains scour Rottnest (Australia) seagrass releasing CO2

16.03.2016

The research published in the journal Nature: Scientific Reports surveyed the 'scars' created by mooring chains in the bays around one of Western Australia's iconic tourist destinations.

Dr Oscar Serrano led the research with Professor Paul Lavery and Professor Pere Masque from the Edith Cowan University (ECU) and the Universitat Autònoma de Barcelona (ICTA-UAB and Department of Physics UAB), and said the movement of the chains scraped seagrass off the seafloor.


This photography shows the loss of seagrass in bays around Rottnest Island off the coast of Perth.

Credit: ECU

"As moored boats drift with the currents, wind and waves they drag a heavy chain across the seafloor and that chain acts just like a razor across the skin removing the seagrass," said Oscar Serrano.

"But unlike a 5 o clock shadow -- in this case the seagrass doesn't grow back.

"Unfortunately these protected, calm bays favoured for boat moorings are also prime habitats for seagrass."

Efforts to preserve seagrass meadows by using seagrass friendly mooring lines in some areas is resulting in the recovery of seagrass in some areas of the Island however overall seagrass covers is decreasing.

That's because the size of mooring scars in Stark Bay on the Island's north coast has increased about 500 per cent from 2,000sqm in 1980to 9,000 sqm today due to erosion of the already scarred areas by wave action.

"Once the mooring chains have started the process of scouring, waves will likely continue spreading those scoured areas.

"In Stark Bay, we've seen the scarred areas join up to become large areas devoid of any seagrass."

The destruction of the seagrass meadows has important implications for the ecosystems of Perth's favourite marine playground.

"Seagrass is an important habitat for many species of fish as well as a food source for dugong and turtles," he said.

"More importantly in a global sense, seagrass absorbs carbon dioxide at more than 40 times faster than tropical rainforests.

"What that also means is that when the seagrass meadows are wiped out the carbon dioxide which has been absorbed over hundreds of years, is released back into the atmosphere."

As part of this project, core samples were taken in the scarred areas and where seagrass still existed.

Those sample showed on average more than 75 per cent of carbon absorbed in those seagrass meadows was lost increasing atmospheric carbon dioxide.

Dr Serrano said it is important steps are taken to protect the seagrass meadows around Rottnest Island and the rest of Australia.

"These older style moorings have started to be replaced on Rottnest Island, but that needs to continue here and in other popular mooring sites," he said.

Fast facts on seagrass:

  • Seagrass meadows cover about 90,000 sqkm of seabed off Australia's coast - that's about the same size as Tasmania.

     

  • Seagrass absorbs CO2 about 40 times faster than rainforests and could be a valuable way to offset carbon emissions.

     

  • But as seagrass meadows die off due to climate change and the effects of human development, that CO2 will be released.

     

  • It is notoriously hard to propagate seagrasses and replace meadows lost due to human influences.

Media Contact

Pere Masqué
Pere.masque@uab.cat
61-047-523-8922

 @UAB_info

http://www.uab.es 

Pere Masqué | EurekAlert!

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>