Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bering Sea chill yields fatter plankton, changes in pollock diet

10.12.2010
Despite a 30-year warming trend, the last three years in the Bering Sea have been the coldest on record. A University of Alaska Fairbanks scientist says that the cold temperatures have helped produce larger zooplankton in the Bering Sea, which may be changing the way Walleye pollock are feeding.

Alexei Pinchuk, research professional at the UAF Seward Marine Center, has spent the last three years gathering zooplankton samples in the Bering Sea. He and his colleagues have been looking at how changes in temperature in the Bering Sea affect resident zooplankton, and in turn how those zooplankton shifts may affect the diet of Walleye pollock.

During colder years, like the last three, pollock tend to eat the larger zooplankton, like copepods and krill, which flourish in chillier temperatures. Pinchuk has also found that the recent cold temperatures have brought an arctic “sand-flea”, the amphipod Themisto libellula, south into Bering Sea waters.Young salmon and pollock seem to prefer to eat these amphipods over other, smaller zooplankton.

In warmer years, which include the record-setting high temperatures of 2001 to 2005, smaller zooplankton tend to thrive. According to Pinchuk and his colleagues, younger pollock tend to eat the smaller plankton, while larger pollock favor the larger plankton found in colder waters. This causes younger pollock to start out doing well in warmer temperatures, but as the pollock grow bigger, they may not be able to find the larger zooplankton prey they need to produce enough fat for overwintering.

“The larger pollock may then eat their smaller cousins instead,” said Pinchuk.

Pinchuk conducted his research on board the U.S. Coast Guard Cutter Healy, R/V Knorr and R/V Thomas G. Thompson. He collected his zooplankton samples using multiple collecting nets.

Although the last few years have been cold, scientists predict that the warming trend in the Bering Sea will continue.

Pinchuk’s findings were recently featured in the Nov. 4 issue of Nature magazine. His work is part of the broad Bering Sea Project, a six-year, $52 million integrated ecosystem study of the Bering Sea. The Bering Sea Project" is funded by both the National Science Foundation and the North Pacific Research Board.

The UAF School of Fisheries and Ocean Sciences conducts world-class marine and fisheries research, education and outreach across Alaska, the Arctic and Antarctic. 60 faculty scientists and 150 students are engaged in building knowledge about Alaska and the world's coastal and marine ecosystems. SFOS is headquartered at the University of Alaska Fairbanks, and serves the state from facilities located in Seward, Juneau, Anchorage and Kodiak.

Contact
Carin Stephens
Senior Information Officer
UAF School of Fisheries and Ocean Sciences
Phone: 907-322-8730
E-mail: cbstephens@alaska.edu
Alexei Pinchuk
Research Professional
UAF School of Fisheries and Ocean Sciences
Seward Marine Center
Phone: 907-224-4313
E-mail: aipinchuk@alaska.edu

Carin Stephens | EurekAlert!
Further information:
http://www.alaska.edu
http://www.sfos.uaf.edu/news/story/?ni=352

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>