Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asian monsoon much older than previously thought

15.09.2014

The Asian monsoon already existed 40 million years ago during a period of high atmospheric carbon dioxide and warmer temperatures, reports an international research team led by a University of Arizona geoscientist.

Scientists thought the climate pattern known as the Asian monsoon began 22-25 million years ago as a result of the uplift of the Tibetan Plateau and the Himalaya Mountains.


Mana Rugbumrung, a researcher at the Department of Mineral Resources in Bangkok, examines the freshly excavated skull of an anthracothere, a hippopotamus-like mammal that lived 40 million years ago in what is now Myanmar. Analyses of the teeth of these ancient mammals and others from the area revealed that the animals lived in a monsoon climate that had dry winters and very rainy summers.

Credit: Alexis Licht 2012

"It is surprising," said lead author Alexis Licht, now a research associate in the UA department of geosciences. "People thought the monsoon started much later."

The monsoon, the largest climate system in the world, governs the climate in much of mainland Asia, bringing torrential summer rains and dry winters.

Co-author Jay Quade, a UA professor of geosciences, said, "This research compellingly shows that a strong Asian monsoon system was in place at least by 35-40 million years ago."

The research by Licht and his colleagues shows the earlier start of the monsoon occurred at a time when atmospheric CO2 was three to four times greater than it is now. The monsoon then weakened 34 million years ago when atmospheric CO2 then decreased by 50 percent and an ice age occurred.

Licht said the study is the first to show the rise of the monsoon is as much a result of global climate as it is a result of topography. The team's paper is scheduled for early online publication in the journal Nature on Sept. 14.

This finding has major consequences for the ongoing global warming," he said. "It suggests increasing the atmospheric CO2 will increase the monsoonal precipitation significantly."

Unraveling the monsoon's origins required contributions from three different teams of scientists that were independently studying the environment of 40 million years ago.

All three investigations showed the monsoon climate pattern occurred 15 million years earlier than previously thought. Combining different lines of evidence from different places strengthened the group's confidence in the finding, Licht said. The climate modeling team also linked the development of the monsoon to the increased CO2 of the time.

Licht and his colleagues at Poitiers and Nancy universities in France examined snail and mammal fossils in Myanmar. The group led by G. Dupont-Nivet and colleagues at Utrecht University in the Netherlands studied lake deposits in Xining Basin in central China. J.-B. Ladant and Y. Donnadieu of the Laboratory of Sciences of the Climate and Environment (LSCE) in Gif-sur-Yvette, France, created climate simulations of the Asian climate 40 million years ago.

A complete list of authors of the group's publication, "Asian monsoons in a late Eocene greenhouse world," is at the bottom of this release, as is a list of funding sources.

Licht didn't set out to study the origin of the monsoon.

He chose his study site in Myanmar because the area was rich in mammal fossils, including some of the earliest ancestors of modern monkeys and apes. The research, part of his doctoral work at the University of Poitiers, focused on understanding the environments those early primates inhabited. Scientists thought those primates had a habitat like the current evergreen tropical rain forests of Borneo, which do not have pronounced differences between wet and dry seasons.

To learn about the past environment, Licht analyzed 40-million-year-old freshwater snail shells and teeth of mammals to see what types of oxygen they contained. The ratio of two different forms of oxygen, oxygen-18 and oxygen-16, shows whether the animal lived in a relatively wet climate or an arid one.

"One of the goals of the study was to document the pre-monsoonal conditions, but what we found were monsoonal conditions," he said.

To his surprise, the oxygen ratios told an unexpected story: The region had a seasonal pattern very much like the current monsoon – dry winters and very rainy summers.

"The early primates of Myanmar lived under intense seasonal stress – aridity and then monsoons," he said. "That was completely unexpected."

The team of researchers working in China found another line of evidence pointing to the existence of the monsoon about 40 million years ago. The monsoon climate pattern generates winter winds that blow dust from central Asia and deposits it in thick piles in China. The researchers found deposits of such dust dating back 41 million years ago, indicating the monsoon had occurred that long ago.

The third team's climate simulations indicated strong Asian monsoons 40 million years ago. The simulations showed the level of atmospheric CO2 was connected to the strength of the monsoon, which was stronger 40 million years ago when CO2 levels were higher and weakened 34 million years ago when CO2 levels dropped.

Licht's next step is to investigate how geologically short-term increases of atmospheric CO2 known as hyperthermals affected the monsoon's behavior 40 million years ago.

"The response of the monsoon to those hyperthermals could provide interesting analogs to the ongoing global warming," he said.

###

Researcher contact information:

Alexis Licht
University of Arizona
alicht@email.arizona.edu
Languages spoken: French and English

Jay Quade
University of Arizona
quadej@email.arizona.edu
(520) 626-1847

Jean-Jacques Jaeger
University of Poitiers (France)
+33549453758
jean-jacques.jaeger@univ-poitiers.fr

Guillaume Dupont-Nivet
University of Rennes (France)
+493319775784 (currently in Potsdam, Germany)
guillaume.dupont-nivet@univ-rennes1.fr

Yannick Donnadieu
+33169088666
Laboratory of Sciences of the Climate and Environment (France)
Yannick.Donnadieu@lsce.ipsl.fr

Related Web sites:

Alexis Licht: http://www.ipgp.fr/~licht/index.html

Jay Quade: http://www.geo.arizona.edu/Quade

UA Geosciences: http://www.geo.arizona.edu/

Complete list of authors and their affiliations:

A. Licht (University of Arizona, Tucson; University of Poitiers, France; and Centre of Petrographic and Geochemical Research (CRPG), Vandoeuvre les Nancy, France); M. van Cappelle (Utrecht University, Netherlands and Imperial College, London); H. A. Abels (Utrecht University, Netherlands and University of Leuven, Belgium); J.-B. Ladant (Laboratory of Sciences of the Climate and Environment (LSCE), Gif-sur-Yvette, France); J. Trabucho-Alexandre (Durham University, U.K); C. France-Lanord (CRPG, Vandoeuvre les Nancy, France); Y. Donnadieu (LSCE, Gif-sur-Yvette, France); J. Vandenberghe (Vrije University, Amsterdam): T. Rigaudier (CRPG, Vandoeuvre les Nancy, France); C. Lécuyer (University of Lyon, France); D. Terry Jr. (Temple University, Philadelphia); R. Adriaens (University of Leuven, Belgium); A. Boura (Pierre and Marie Curie University and National Museum of Natural History, Paris); Z. Guo (Peking University, Beijing); Aung Naing Soe (Defence Services Academy, Pyin Oo Lwin, Myanmar); J. Quade (University of Arizona, Tucson); G. Dupont-Nivet (University of Leuven, Belgium; Peking University, Beijing; University of Rennes, France; University of Potsdam, Germany); J.-J. Jaeger (University of Poitiers, France).

The research was supported by the following organizations: 09-BLAN-0238-02 Program of the French National Research Agency (ANR); the Universities of Poitiers and Nancy; the Netherlands Organisation for Scientific Research (NWO-ALW); the Marie Curie Career Integration Grant (CIG) 294282; the Ministry of Culture of the Republic of the Union of Myanmar; the French Ministries of Foreign Affairs and of Higher Education and Research; the Alexander von Humboldt Foundation; the Chinese Ministry of Education; the National Natural Science Foundation of China; and the Fyssen Foundation.

Mari N. Jensen | Eurek Alert!

Further reports about: Arizona Asian CO2 Climate Environment Foundation Gif-sur-Yvette Myanmar deposits monsoon monsoons primates

More articles from Earth Sciences:

nachricht Seismic study reveals huge amount of water dragged into Earth's interior
18.12.2018 | National Science Foundation

nachricht A damming trend
17.12.2018 | Michigan State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Physicists found a correlation between the structure and magnetic properties of ceramics

18.12.2018 | Physics and Astronomy

Unique insights into an exotic matter state

18.12.2018 | Physics and Astronomy

Physicists studied the influence of magnetic field on thin film structures

18.12.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>