Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Arctic sharks tolerated brackish water 50 million years ago

01.07.2014

Sharks were a tolerant bunch some 50 million years ago, cruising an Arctic Ocean that contained about the same percentage of freshwater as Louisiana's Lake Ponchatrain does today, says a new study involving the University of Colorado Boulder and the University of Chicago.

The study indicates the Eocene Arctic sand tiger shark, a member of the lamniform group of sharks that includes today's great white, thresher and mako sharks, was thriving in the brackish water of the western Arctic Ocean back then. In contrast, modern sand tiger sharks living today in the Atlantic Ocean are very intolerant of low salinity, requiring three times the saltiness of the Eocene sharks in order to survive.


CU-Boulder associate professor Jaerlyn Eberle, left, and research colleagues collect ancient sharks teeth on Banks Island in the Arctic Circle. Oxygen isotopes in the teeth indicated sharks living in the Eocene Arctic Ocean roughly 50 million years ago were tolerant of brackish water, unlike their shark relatives living today.

Credit: Jaelyn Eberle, University of Colorado

"This study shows the Arctic Ocean was very brackish and had reduced salinity back then," said University of Chicago postdoctoral researcher Sora Kim, first author on the study. "The ancient sand tiger sharks that lived in the Arctic during the Eocene were very different than sand tiger sharks living in the Atlantic Ocean today."

The findings have implications for how today's sharks might fare in a warming Arctic region, which is heating up at about twice the rate of the rest of the planet due to increasing greenhouse gases, said CU-Boulder geological sciences Associate Professor Jaelyn Eberle, a study co-author.

The potential consequences of warming in the Arctic include changes in freshwater runoff and atmospheric water vapor and decreases in salinity that can affect marine biology and seawater circulation dynamics.

"As more freshwater flows into the Arctic Ocean due to global warming, I think we are going to see it become more brackish," said Eberle, also curator of fossil vertebrates at the University of Colorado Museum of Natural History. "Maybe the fossil record can shed some light on how the groups of sharks that are with us today may fare in a warming world."

A paper on the subject was published online June 30 in the journal Geology. Other co-authors include David Bell from the University of Wyoming, Dewayne Fox from Delaware State University and Aspen Padilla, a CU-Boulder graduate who worked with Eberle as a master's candidate. The study was funded in part by the National Science Foundation.

The new findings on Arctic Ocean salinity conditions in the Eocene were calculated in part by comparing ratios of oxygen isotopes locked in ancient shark teeth found in sediments on Banks Island in the Arctic Circle and incorporating the data into a salinity model. The team also compared its information to prior studies of sediment cores extracted from an oceanic region in the central Arctic Ocean called the Lomonosov Ridge -- a steep hump of continental crust that rises more than 1,000 feet from the ocean floor -- to estimate past environmental conditions in the Arctic Ocean.

"Oxygen isotopes in ancient bones and teeth reflect the water animals are living in or drinking," said Kim, a former postdoctoral researcher at the University of Wyoming. "Because sharks are aquatic, the oxygen from the ocean is constantly being exchanged with oxygen in their body water, and that's what is incorporated into their teeth. When I analyzed their isotopic composition, the numbers seemed weird at first because they indicated an essentially freshwater environment."

The team analyzed 30 fossil sand tiger shark teeth exhumed from Banks Island and 19 modern sand tiger shark teeth from specimens caught in Delaware Bay bordered by Delaware and New Jersey. The paleo-salinity estimate for the modern sand tiger sharks is consistent with the continental shelf salinity present from Delaware south to Florida and from the coastline to roughly six miles offshore, known hunting grounds for modern sand tiger sharks, which have formidable teeth and can reach a length of nearly 10 feet.

The Eocene Epoch, which ran from about 56 to 34 million years ago, was marked by wild temperature fluctuations, including intense greenhouse periods when lush rainforests abounded in the Arctic. Previous studies by Eberle and colleagues showed the fauna there included ancestors of tapirs, hippo-like creatures, crocodiles and giant tortoises. Despite the six months of darkness each year, the terrestrial Arctic climate included warm humid summers and mild winters with temperatures ranging from just above freezing to about 70 degrees Fahrenheit.

"We now know a fair amount about the terrestrial animals and plants that were living in the Eocene Arctic greenhouse period," said Eberle. "To finally get some data on the Eocene marine environment using these shark teeth will help us to begin filling in the gaps."

Eberle said the Eocene Arctic Ocean was largely isolated from the global oceans. "Increased freshwater runoff from the land due to an intensified hydrologic cycle and a humid Arctic would have turned it more brackish pretty quickly," she said.

The salinity gradient across the Eocene Arctic Ocean that provided habitat for the ancient sand tiger sharks also was found to be much larger than the salinity gradient tolerated by modern sand tiger sharks living in the Atlantic Ocean, said Eberle. "The Eocene lamniform group of sharks had a much broader environmental window than lamniform sharks do today."

Eberle and Kim said the early-middle Eocene greenhouse period from 53 to 38 million years ago is used as a deep-time analog by climate scientists for what could happen on Earth if CO2 and other greenhouse gases in Earth's atmosphere continue to rise, and what a "runaway" greenhouse effect potentially could look like.

"Through an analysis of fossil sand tiger shark teeth from the western Arctic Ocean, this study offers new evidence for a less salty Arctic Ocean during an ancient 'greenhouse period,' " says Yusheng "Chris" Liu, program director in the NSF's Division of Earth Sciences, which co-funded the research with NSF's Division of Polar Programs. "The results also confirm that the Arctic Ocean was isolated during that long-ago time."

Jaelyn Eberle, CU-Boulder, 303-819-6914
jaelyn.eberle@colorado.edu
Sora Kim, University of Chicago, 773-669-4147
sora@uchicago.edu
Jim Scott, CU-Boulder media relations, 303-492-3114
jim.scott@colorado.edu

Jaelyn Eberle | Eurek Alert!
Further information:
http://www.colorado.edu/news

Further reports about: Arctic CU-Boulder Delaware Eocene Ocean Wyoming freshwater gases greenhouse salinity sharks

More articles from Earth Sciences:

nachricht In the Arctic, spring snowmelt triggers fresh CO2 production
06.07.2020 | San Diego State University

nachricht The latest findings on the MOSAiC floe
06.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Guido Bonati is the new Chief Technology Officer and Head of Research & Development at FISBA AG

08.07.2020 | Press release

Quick notes in the genome

07.07.2020 | Life Sciences

Limitations of Super-Resolution Microscopy Overcome

07.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>