Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prizewinning Pair of Mathematicians

10.09.2008
The DFG Awards the von Kaven Prize to Two Researchers in the Year of Mathematics

Two outstanding young researchers have been selected to receive the von Kaven Prize in mathematics from the von Kaven Foundation, which is administered by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation).

The recipients of the award in 2008, the Year of Mathematics, are Professor Dr. Arthur Bartels, who works on topology at the University of Münster, and Dr. Ulrich Görtz, who works on number theory at the University of Bonn. The prizes, which are worth 10,000 euros each, will be awarded at a ceremony during the opening of the annual conference of the German Mathematical Society (DMV) in Erlangen on 15 September 2008. The award will be presented on behalf of the DFG by Professor Thomas Peternell, a member of the mathematics review board and the award selection committee. The prize is funded from the proceeds of the von Kaven Foundation, which was established in December 2004 by mathematician Herbert von Kaven, from Detmold.

Prof. Dr. Arthur Bartels, 36, works in the field of geometric and algebraic topology. After completing his degree in mathematics in 1997 at the University of Mainz, Professor Bartels, who was born in Tübingen, obtained his doctorate from the University of California, San Diego in 1999, before gaining his habilitation in mathematics from the University of Münster in 2005. His work there included a period as a postdoctoral researcher as part of Collaborative Research Centre 478 “Geometrical Structures in Mathematics”, which was funded by the DFG, before being awarded a Heisenberg fellowship by the DFG in 2007.

After spending winter semester 2007/08 as a visiting lecturer at Imperial College London, Bartels then accepted an appointment to a chair at the University of Münster in April 2008. His research focuses primarily on the so-called Farrell Jones Conjecture and related problems. This conjecture is important to understanding the topology of manifolds, in other words, of generalised surfaces, some in higher dimensional spaces.

Dr. Ulrich Görtz, who is 35, works in the field of arithmetic algebraic geometry. After graduating from the University of Münster in 1997, Görtz wrote his thesis at the University of Cologne, where he received his doctorate in 2000. He also gained a wealth of international experience, spending periods at the Institut Henri Poincaré in Paris, the Institute for Advanced Study in Princeton, the Fields Institute in Toronto and at the University of Chicago. In late 2006 Görtz earned his habilitation at the University of Bonn, from where he successfully applied for a Heisenberg fellowship from the DFG in 2007, with which he is now working at the Mathematical Institute in Bonn.

He is particularly interested in algebraic geometric problems which originate from the Langlands program or the theory of Shimura varieties. This also involves relations to numerous other areas in mathematics, for instance to algebraic geometry and number theory, and in particular to representation theory.

Jutta Hoehn | alfa
Further information:
http://www.dfg.de

Further reports about: DFG DMV Prizewinning algebraic arithmetic algebraic geometry geometric topology

More articles from Awards Funding:

nachricht Million funding for Deep Learning project in Leipzig
15.08.2018 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Advanced Grant for Grain Boundary Phase Transformations
06.08.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>