10.09.2008

The DFG Awards the von Kaven Prize to Two Researchers in the Year of Mathematics

Two outstanding young researchers have been selected to receive the von Kaven Prize in mathematics from the von Kaven Foundation, which is administered by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation).

The recipients of the award in 2008, the Year of Mathematics, are Professor Dr. Arthur Bartels, who works on topology at the University of Münster, and Dr. Ulrich Görtz, who works on number theory at the University of Bonn. The prizes, which are worth 10,000 euros each, will be awarded at a ceremony during the opening of the annual conference of the German Mathematical Society (DMV) in Erlangen on 15 September 2008. The award will be presented on behalf of the DFG by Professor Thomas Peternell, a member of the mathematics review board and the award selection committee. The prize is funded from the proceeds of the von Kaven Foundation, which was established in December 2004 by mathematician Herbert von Kaven, from Detmold.

Prof. Dr. Arthur Bartels, 36, works in the field of geometric and algebraic topology. After completing his degree in mathematics in 1997 at the University of Mainz, Professor Bartels, who was born in Tübingen, obtained his doctorate from the University of California, San Diego in 1999, before gaining his habilitation in mathematics from the University of Münster in 2005. His work there included a period as a postdoctoral researcher as part of Collaborative Research Centre 478 “Geometrical Structures in Mathematics”, which was funded by the DFG, before being awarded a Heisenberg fellowship by the DFG in 2007.

... more about:

»DFG »DMV »Prizewinning »algebraic »arithmetic algebraic geometry »geometric »topology

»DFG »DMV »Prizewinning »algebraic »arithmetic algebraic geometry »geometric »topology

After spending winter semester 2007/08 as a visiting lecturer at Imperial College London, Bartels then accepted an appointment to a chair at the University of Münster in April 2008. His research focuses primarily on the so-called Farrell Jones Conjecture and related problems. This conjecture is important to understanding the topology of manifolds, in other words, of generalised surfaces, some in higher dimensional spaces.

Dr. Ulrich Görtz, who is 35, works in the field of arithmetic algebraic geometry. After graduating from the University of Münster in 1997, Görtz wrote his thesis at the University of Cologne, where he received his doctorate in 2000. He also gained a wealth of international experience, spending periods at the Institut Henri Poincaré in Paris, the Institute for Advanced Study in Princeton, the Fields Institute in Toronto and at the University of Chicago. In late 2006 Görtz earned his habilitation at the University of Bonn, from where he successfully applied for a Heisenberg fellowship from the DFG in 2007, with which he is now working at the Mathematical Institute in Bonn.

He is particularly interested in algebraic geometric problems which originate from the Langlands program or the theory of Shimura varieties. This also involves relations to numerous other areas in mathematics, for instance to algebraic geometry and number theory, and in particular to representation theory.

Jutta Hoehn | alfa

Further information:

http://www.dfg.de

**Further reports about:**
> DFG
> DMV
> Prizewinning
> algebraic
> arithmetic algebraic geometry
> geometric
> topology

Million funding for Deep Learning project in Leipzig

15.08.2018 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Advanced Grant for Grain Boundary Phase Transformations

06.08.2018 | Max-Planck-Institut für Eisenforschung GmbH

New design tool automatically creates nanostructure 3D-print templates for user-given colors

Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Anzeige

Anzeige

Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks

Science & Research

Science & Research

NASA | A Year in the Life of Earth's CO2

NASA Computer Model Provides a New Portrait of Carbon Dioxide

Black Holes Come to the Big Screen

The new movie "Interstellar" explores a longstanding fascination, but UA astrophysicists are using cutting-edge technology to go one better.

NASA's Swift Mission Observes Mega Flares from a Mini Star

NASA's Swift satellite detected the strongest, hottest, and longest-lasting sequence of stellar flares ever seen from a nearby red dwarf star.

NASA | Global Hawks Soar into Storms

NASA's airborne Hurricane and Severe Storm Sentinel or HS3 mission, will revisit the Atlantic Ocean for the third year in a row.

Baffin Island - Disappearing ice caps

Giff Miller, geologist and paleoclima-tologist, is walking the margins of melting glaciers on Baffin Island, Nunavut, Canada.

The Infrasound Network and how it works

The CTBTO uses infrasound stations to monitor the Earth mainly for atmospheric explosions.