Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gustav Hertz Prize of DPG for Dr. Eleftherios Goulielmakis

20.11.2012
Dr. Eleftherios Goulielmakis, a research group leader at the Max-Planck-Institute of Quantum Optics (MPQ) in Garching (Germany), has been named as the recipient of the 2013 Gustav Hertz Award of the German Physical Society (DPG).
This DPG award is in particular given to young physicists in recognition of a recent scientific achievement, in order to encourage young physics students. Dr. Goulielmakis will be presented with this prize for “outstanding contributions in the field of attosecond physics, in particular for his work on the attosecond control of light fields and their use for tracing the motion of electrons in atoms in real time which paves the way towards controlling matter on a nanoscopic scale with unprecedented precision.”

Dr. Eleftherios Goulielmakis, born in 1975 in Heraklion (Greece), received his B.SC. and Master’s degree from the Physics Department of the University of Crete (Greece), in 2000 and 2002 respectively, and his PhD from the Ludwig-Maximilians-Universität München (LMU), Germany, in 2005. He then worked as a scientist in the Division of Attosecond Physics (led by Prof. Ferenc Krausz), being one of the project leaders of the Munich-Centre for Advanced Photonics (MAP). In 2010 he received an ERC Starting Grant of the European Research Council which enabled him to start his own research group “Attoelectronics”.

In his dissertation Dr. Eleftherios Goulielmakis focused on the development of what is of central importance in attosecond science and metrology today: the attosecond streaking technique. This technique utilized the ultrafast field variation of light pulses in order to capture fast electronic phenomena of the microcosm. Other than its important implications for the understanding of quantum mechanical processes, the technique allowed the establishment of a novel – and up to date unique – method for capturing the field waveform of light waves.

Some of his most remarkable achievements are the generation of the shortest isolated burst of electromagnetic radiation generated to date lasting as short as 80 attoseconds (1 as = 10 to the -18 s) in 2008 as well as the use of such bursts to trace, in real time, the motion of electrons in atoms in 2010. More recently Dr. Goulielmakis and his research group Attoelectronics focused on developing the world’s first Light Field Synthesizer, an experimental apparatus that manipulates extremely broadband light pulses that span from the ultraviolet to the deep infrared part of the electromagnetic spectrum.

It allows scientists – for the first time – to synthesize and to tailor the field waveform of a light pulse with sub-optical cycle resolution and attosecond precision. These light transients offer yet a more sophisticated platform for controlling electrons with light and open up new ways to manipulating the microcosm at unprecedented temporal precision. Important implications of these developments, in the years to come, may be anticipated in areas such as photonics, chemistry and nanotechnology.

Dr. Goulielmakis is also the recipient of the Foteinos Prize of the Academy of Athens in 2007 and the “IUPAP Young Scientist Prize in Optics” from the International Union of Pure and Applied Physics in 2010. The Gustav Hertz Award will be prsented to Eleftherios Goulielmakis on the occasion of the next annual meeting of the German Physical Society, which will take place in Dresden in March 2013. Olivia Meyer-Streng

Contact:
Dr. Eleftherios Goulielmakis
Max-Planck-Institute of Quantum Optics
Laboratory for Attosecond Physics
Research Group Attoelectronics
Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
Phone: +49( 0) 89 32 905 -632
Fax:+49 (0) 89 32 905 -200
e-mail: eleftherios.goulielmakis@mpq.mpg.de
www.attoworld.de/goulielmakis-group

Dr. Olivia Meyer-Streng
Press & Public Relations
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
Phone: +49(0) 89 32 905 -213
Fax:+49(0) 89 32 905 -200
e-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Awards Funding:

nachricht Success at leading conference on silicon materials science and technology in Japan
13.12.2018 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht Ultrasound Connects
13.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>