Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emmy Noether junior research group investigates new magnetic structures for spintronics applications

11.10.2016

New Emmy Noether independent junior research group TWIST to be set up at Mainz University / Skyrmions could one day make the storage media in our computers smaller and more efficient

Theoretical physicist Dr. Karin Everschor-Sitte will be setting up an Emmy Noether independent junior research group at Johannes Gutenberg University Mainz (JGU) with the aid of funding from the German Research Foundation (DFG). The workgroup TWIST – short for Topological Whirls in SpinTronics – will be looking at skyrmions.


From 'hairy ball' to skyrmion: If a hairy ball (top) is projected onto a surface, a skyrmion (bottom) is generated.

Ill./©: Dr. Karin Everschor-Sitte and Dr. Matthias Sitte

These are new magnetic 'particles' named after the physicist Tony Skyrme that could in future ensure that the storage media in our computers become smaller and more efficient. A skyrmion can be described as a kind of node or vortex within a magnetic texture.

Skyrmions are characterized by the fact that they are more stable than any other magnetic structures and react particularly readily to spin currents. This is why skyrmions are considered to be of relevance to technological applications in the field of spintronics, a young physics discipline that is exploring not only the electronic charges of such particles, but also their spin, i.e., their magnetic properties.

The objective of Dr. Karin Everschor-Sitte is to gain a deeper understanding of the interaction between skyrmions, magnetic structures, and spin and charge currents and to develop new theories that will enable her to make the best use of skyrmions in technological applications.

Her future projects could produce some innovative concepts that would be of commercial interest. "We are delighted that Dr. Karin Everschor-Sitte will be contributing to our work in the field of spintronics," says Professor Jairo Sinova, Director of SPICE, the Spin Phenomena Interdisciplinary Center at Mainz University that, alongside the Emmy Noether group to be established in November 2016, is also affiliated with the Condensed Matter Physics (KOMET) work group of the JGU Institute of Physics.

Through its Emmy Noether Program, the German Research Foundation supports young researchers in achieving independence at an early stage of their scientific careers by giving them the opportunity to head a junior research group and thus gain the qualifications required for a university teaching career. Independent junior research groups are usually funded for a period of five years. Dr. Karin Everschor-Sitte worked at the University of Texas at Austin in the USA from 2013 to 2015 and relocated to Mainz in November 2015. She will begin setting up her workgroup at JGU in November 2016.

Images:
http://www.uni-mainz.de/bilder_presse/08_physik_komet_emmy_noether_twist_01.jpg
Dr. Karin Everschor-Sitte
photo/©: private

http://www.uni-mainz.de/bilder_presse/08_physik_komet_emmy_noether_twist_02.jpg
From 'hairy ball' to skyrmion: If a hairy ball (top) is projected onto a surface, a skyrmion (bottom) is generated.
Ill./©: Dr. Karin Everschor-Sitte and Dr. Matthias Sitte

Further information:
Dr. Karin Everschor-Sitte
INSPIRE Group
Condensed Matter Physics (KOMET)
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23643
fax +49 6131 39-26375
e-mail: kaeversc@uni-mainz.de
https://www.sinova-group.physik.uni-mainz.de/karin-everschor-sitte/

Weitere Informationen:

http://www.staff.uni-mainz.de/kaeversc/index.html

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht LandKlif: Changing Ecosystems
06.07.2018 | Julius-Maximilians-Universität Würzburg

nachricht “Future of Composites in Transportation 2018”, JEC Innovation Award for hybrid roof bow
29.06.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes

17.07.2018 | Life Sciences

Electronic stickers to streamline large-scale 'internet of things'

17.07.2018 | Information Technology

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>