Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BMBF funds translational project to improve radiotherapy

10.05.2017

The German Federal Ministry of Education and Research (BMBF) will be supplying the ZiSStrans research consortium with around four million euros over the next five years. The joint project, which is being coordinated at the Helmholtz Zentrum München, has the objective of investigating new possibilities to personalize radiotherapy of head and neck cancer.

The term ‘head-neck cancer’ is used to refer to various tumor types that occur in this part of the body, for example, cancer of the oral cavity or pharynx. Radiotherapy, either alone or combined with surgery and/or chemotherapy, is a central element in the complex treatment strategies.


Irradiation planning of a head-neck tumor

Source: Klinikum der Universität München

Difficulties arise, however, if the tumors demonstrate so-called radiation resistance and do not respond to the treatment as desired, or if undesirable effects occur that make it necessary to stop the treatment.

“This is where the ZiSStrans project comes in,” explains coordinator Prof. Dr. Horst Zitzelsberger, head of the Radiation Cytogenetics Research Unit at the Helmholtz Zentrum München. “Our objective is to identify molecular signaling pathways and target structures for the radiation response and to examine them in patient studies.”

In this field, this step is called translation, which also explains the project's name. Because ZiSStrans is the translational follow-up project of “Targets and signaling pathways of radiation hypersensitivity and resistance” or ZiSS for short, which ran from 2012 to 2017.
http://www.bfs.de/EN/bfs/science-research/third-party-funded-research/ziss.html;...

The researchers particularly hope to gain new insights by comparing tumor and normal tissue. “The radiosensitivity of the surrounding healthy tissue limits the radiotherapy intensity which can be applied, because this is where undesirable effects can occur,” Zitzelsberger explains.

By understanding the signaling networks in the tumor and normal tissue, the researchers want to explore how the radiation response and resistance can be selectively influenced and how the treatment success can be improved by molecular substances.

A further focus of the research consortium is on personalized treatment. The use of new markers should make it possible to predict whether or not the particular patient will be able to profit from the planned action, even before the first radiation treatment. “In the future, we want to be able to say with great certainty that a particular patient is either a ‘responder’ or a ‘non-responder’, which means if the patient will respond to the treatment or if other options must be considered in advance,” says coordinator Zitzelsberger.

Of the total of four million euros that the BMBF will be providing to the project between 2017 and 2022, around 800,000 will be allocated to the Helmholtz Zentrum München. In addition to Research Unit Head Zitzelsberger, the groups of Dr. Julia Heß and Dr. Kristian Unger are also involved. Furthermore, the following partners are participating in the project:

• University Hospital of Munich (LMU, Department for Radiotherapy and Radiation Oncology, Prof. Lauber, Prof. Belka)
• Essen University Hospital (Institute of Cell Biology, Prof. Jendrossek, PD Dr. Klein)
• Medical Center – University of Freiburg (Center for Diagnostic and Therapeutic Radiology, Prof. Henke)
• Charité University Hospital Berlin (Institute of Pathology, Prof. Blüthgen)
• German Federal Office for Radiation Protection Neuherberg (Biological Radiation Effects, Dr. Hornhardt, Dr. Gomolka)
• Clinical cooperation group "Personalized radiotherapy of head-neck tumors" involving the Department for Radiotherapy and Radiation Oncology, University Hospital of Munich (LMU) and the Radiation Cytogenetics Research Unit, Helmholtz Zentrum München

Further information

Background:
Almost one year ago, researchers in the consortium had already developed a new method of predicting disease progression of certain brain tumors after standard treatment. In the journal ‘Oncotarget’, they were able to show that four miRNAs can provide the crucial indications. A direct application for a corresponding patent has already been made: https://www.helmholtz-muenchen.de/en/press-media/press-releases/all-press-releas...

In the thyroid gland, the researchers have also been able to identify markers for tumors induced by radiation: https://www.helmholtz-muenchen.de/en/press-media/press-releases/all-press-releas...

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Research Unit Radiation Cytogenetics (ZYTO) investigates radiation-induced chromosome and DNA damage in cell systems and human tumours. The focus is on clarifying the mechanisms associated with radiation-induced carcinogenesis and radiation sensitivity of tumour cells. The aim of this research is to find biomarkers associated with radiation-induced tumours in order to develop personalized radiation therapy for the stratification of patients. ZYTO is a part of the Department of Radiation Sciences (DRS). http://www.helmholtz-muenchen.de/zyto

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - E-mail: presse@helmholtz-muenchen.de

Scientific Contact at Helmholtz Zentrum München:
Prof. Dr. Horst Zitzelsberger, Helmholtz Zentrum München - German Research Center for Environmental Health, Research Unit Radiation Cytogenetics, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 3421, E-mail: Zitzelsberger@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: BMBF Cytogenetics Environmental Health Radiation radiotherapy tumors

More articles from Awards Funding:

nachricht Reconstructing the richness of pristine oceans funded by the ERC
28.10.2019 | Johannes Gutenberg-Universität Mainz

nachricht AI for Understanding and Modelling the Earth System – International Research Team wins ERC Synergy Grant
14.10.2019 | Max-Planck-Institut für Biogeochemie

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

The cascade to criticality

03.06.2020 | Physics and Astronomy

These flexible feet help robots walk faster

03.06.2020 | Power and Electrical Engineering

Developing a digital holography-based multimodal imaging system to visualize living cells

03.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>