Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BMBF funds translational project to improve radiotherapy

10.05.2017

The German Federal Ministry of Education and Research (BMBF) will be supplying the ZiSStrans research consortium with around four million euros over the next five years. The joint project, which is being coordinated at the Helmholtz Zentrum München, has the objective of investigating new possibilities to personalize radiotherapy of head and neck cancer.

The term ‘head-neck cancer’ is used to refer to various tumor types that occur in this part of the body, for example, cancer of the oral cavity or pharynx. Radiotherapy, either alone or combined with surgery and/or chemotherapy, is a central element in the complex treatment strategies.


Irradiation planning of a head-neck tumor

Source: Klinikum der Universität München

Difficulties arise, however, if the tumors demonstrate so-called radiation resistance and do not respond to the treatment as desired, or if undesirable effects occur that make it necessary to stop the treatment.

“This is where the ZiSStrans project comes in,” explains coordinator Prof. Dr. Horst Zitzelsberger, head of the Radiation Cytogenetics Research Unit at the Helmholtz Zentrum München. “Our objective is to identify molecular signaling pathways and target structures for the radiation response and to examine them in patient studies.”

In this field, this step is called translation, which also explains the project's name. Because ZiSStrans is the translational follow-up project of “Targets and signaling pathways of radiation hypersensitivity and resistance” or ZiSS for short, which ran from 2012 to 2017.
http://www.bfs.de/EN/bfs/science-research/third-party-funded-research/ziss.html;...

The researchers particularly hope to gain new insights by comparing tumor and normal tissue. “The radiosensitivity of the surrounding healthy tissue limits the radiotherapy intensity which can be applied, because this is where undesirable effects can occur,” Zitzelsberger explains.

By understanding the signaling networks in the tumor and normal tissue, the researchers want to explore how the radiation response and resistance can be selectively influenced and how the treatment success can be improved by molecular substances.

A further focus of the research consortium is on personalized treatment. The use of new markers should make it possible to predict whether or not the particular patient will be able to profit from the planned action, even before the first radiation treatment. “In the future, we want to be able to say with great certainty that a particular patient is either a ‘responder’ or a ‘non-responder’, which means if the patient will respond to the treatment or if other options must be considered in advance,” says coordinator Zitzelsberger.

Of the total of four million euros that the BMBF will be providing to the project between 2017 and 2022, around 800,000 will be allocated to the Helmholtz Zentrum München. In addition to Research Unit Head Zitzelsberger, the groups of Dr. Julia Heß and Dr. Kristian Unger are also involved. Furthermore, the following partners are participating in the project:

• University Hospital of Munich (LMU, Department for Radiotherapy and Radiation Oncology, Prof. Lauber, Prof. Belka)
• Essen University Hospital (Institute of Cell Biology, Prof. Jendrossek, PD Dr. Klein)
• Medical Center – University of Freiburg (Center for Diagnostic and Therapeutic Radiology, Prof. Henke)
• Charité University Hospital Berlin (Institute of Pathology, Prof. Blüthgen)
• German Federal Office for Radiation Protection Neuherberg (Biological Radiation Effects, Dr. Hornhardt, Dr. Gomolka)
• Clinical cooperation group "Personalized radiotherapy of head-neck tumors" involving the Department for Radiotherapy and Radiation Oncology, University Hospital of Munich (LMU) and the Radiation Cytogenetics Research Unit, Helmholtz Zentrum München

Further information

Background:
Almost one year ago, researchers in the consortium had already developed a new method of predicting disease progression of certain brain tumors after standard treatment. In the journal ‘Oncotarget’, they were able to show that four miRNAs can provide the crucial indications. A direct application for a corresponding patent has already been made: https://www.helmholtz-muenchen.de/en/press-media/press-releases/all-press-releas...

In the thyroid gland, the researchers have also been able to identify markers for tumors induced by radiation: https://www.helmholtz-muenchen.de/en/press-media/press-releases/all-press-releas...

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Research Unit Radiation Cytogenetics (ZYTO) investigates radiation-induced chromosome and DNA damage in cell systems and human tumours. The focus is on clarifying the mechanisms associated with radiation-induced carcinogenesis and radiation sensitivity of tumour cells. The aim of this research is to find biomarkers associated with radiation-induced tumours in order to develop personalized radiation therapy for the stratification of patients. ZYTO is a part of the Department of Radiation Sciences (DRS). http://www.helmholtz-muenchen.de/zyto

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - E-mail: presse@helmholtz-muenchen.de

Scientific Contact at Helmholtz Zentrum München:
Prof. Dr. Horst Zitzelsberger, Helmholtz Zentrum München - German Research Center for Environmental Health, Research Unit Radiation Cytogenetics, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 3421, E-mail: Zitzelsberger@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: BMBF Cytogenetics Environmental Health Radiation radiotherapy tumors

More articles from Awards Funding:

nachricht LandKlif: Changing Ecosystems
06.07.2018 | Julius-Maximilians-Universität Würzburg

nachricht “Future of Composites in Transportation 2018”, JEC Innovation Award for hybrid roof bow
29.06.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>