Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Create Car Parts From Coconuts

07.01.2009
A team of Baylor University researchers who have identified a variety of low-cost products that can be manufactured from coconuts in poor coastal regions have now developed a way to use coconut husks in automotive interiors.

The Baylor researchers have developed a technology to use coconut fiber as a replacement for synthetic polyester fibers in compression molded composites. Specifically, their goal is to use the coconut fibers to make trunk liners, floorboards and interior door covers on cars, marking the first time coconut fibers have been used in these applications.

Since coconuts are an abundant, renewable resource in all countries near the equator, Baylor's team is working to create multiple products that could be manufactured from coconuts in those regions using simple and inexpensive technology. With an estimated 11 million coconut farmers in the world making an average annual income of $500, the Baylor researchers hope to triple the coconut farmer’s annual income by increasing the market price for each coconut to 30 cents, which could have a substantial effect on the farmer’s quality of life.

“What we hope to do is create a viable market for the poor coconut farmer,” said Dr. Walter Bradley, Distinguished Professor of Engineering at Baylor, who is leading the project. “Our goal is to create millions of pounds of demand at a much better price.”

The Baylor researchers said the mechanical properties of coconut fibers are just as good, if not better, than synthetic and polyester fibers when using them in automotive parts. Bradley said the coconut fibers are less expensive than other fibers and better for the environment because the coconut husks would have otherwise been thrown away. Coconuts also do not burn very well or give off toxic fumes, which is crucial in passing tests required for actual application in commercial automotive parts.

Bradley said they are working closely with a Texas-based fiber processing company that is a supplier of unwoven fiber mats to four major automotive companies.

The Baylor researchers are now putting the automotive parts that use coconut fiber through a series of certification tests to see if the fiber meets the necessary safety performance specifications.

About Baylor:

Chartered in 1845 by the Republic of Texas, Baylor University is the oldest, continually operating university in the state. Baylor’s 735-acre campus in Waco, Texas, is home to more than 14,500 students from all 50 states and 70 countries, who can choose from more than 140 undergraduate and 100 graduate programs through 11 academic units. Baylor, a private Christian university and a nationally ranked liberal arts institution, is classified by the Carnegie Foundation for the Advancement of Teaching as a research university with “high research activity.” This blends with Baylor’s international reputation for educational excellence built upon the faculty’s commitment to teaching, scholarship and interdisciplinary research to produce outstanding graduates.

Matt Pene | Newswise Science News
Further information:
http://www.baylor.edu

More articles from Automotive Engineering:

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>