Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiencing virtual products

17.04.2008
An electric car window slides smoothly upward at the press of a button. While power windows are certainly convenient, they can also pose a safety risk.

For instance, if a child puts their hand out the window to wave to a friend, the window must stop moving immediately or there could be serious consequences: Tiny fingers can easily get jammed, or the window's mechanism may be damaged.

For the first time, the Functional DMU project has enabled Fraunhofer researchers to create a virtual product that can simulate the complex interaction between electrical and mechanical components – such as those used for power windows and convertible rooftop systems.

While computer-supported test models have become part of everyday production activities, not all process chain components can be simulated. "The Digital Mock-Up (DMU) is a virtual model that represents a product's structure and geometry. DMU is today’s standard in virtual product development," says Dr. André Stork of the Fraunhofer Institute for Computer Graphics (IGD) in Darmstadt.

Until now, DMU and the associated software tools have only taken product geometry into account. "However, a growing number of the mechatronic components being used today are still not fully represented in virtual test models, although this is precisely what manufacturers urgently need. Discussions with industry partners have shown that these functionalities are what companies want most," Stork points out in explaining the project's background.

"With the help of various software packages, Functional DMU can simulate a mechatronic product's software-related components as well as its electronic and mechanical components. We import the individual components into a complete model. Once this has been done, we can quickly determine whether the components work well together, or whether there are safety issues such as windows that are too thick and heavy, or an engine that is too weak," the specialist says. Close cooperation between mechanics, electronics and software development is particularly important. In addition to the work of IGD researchers, experts from the Design Automation Division at the Fraunhofer Institute for Integrated Circuits IIS, the Fraunhofer Institute for Open Communication Systems FOKUS and the Fraunhofer Institute for Structural Durability and System Reliability LBF have also contributed to the project.

Together, they have developed a Functional DMU framework that can integrate the mechatronic properties of individual components into the simulation, and can also evaluate them. The framework combines a variety of different commercial simulators, such as SimPack, Matlab/Simulink and Dymola. Here, it is particularly important that the behavior of individual components be visualized in real time. There are now demonstrators that show how Functional DMU works. One of these is the virtual power window, which will be on display at the joint Fraunhofer booth at the Hannover Messe (Hall 17, Booth D60). The next project on the scientists' agenda is the simulation of a steering test rig. Here, again, mechanical, electrical and software components work interactively.

Monika Weiner | alfa
Further information:
http://www.fraunhofer.de/EN/press/pi/2008/04/PressRelease10April2008.jsp

More articles from Automotive Engineering:

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>