Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiencing virtual products

17.04.2008
An electric car window slides smoothly upward at the press of a button. While power windows are certainly convenient, they can also pose a safety risk.

For instance, if a child puts their hand out the window to wave to a friend, the window must stop moving immediately or there could be serious consequences: Tiny fingers can easily get jammed, or the window's mechanism may be damaged.

For the first time, the Functional DMU project has enabled Fraunhofer researchers to create a virtual product that can simulate the complex interaction between electrical and mechanical components – such as those used for power windows and convertible rooftop systems.

While computer-supported test models have become part of everyday production activities, not all process chain components can be simulated. "The Digital Mock-Up (DMU) is a virtual model that represents a product's structure and geometry. DMU is today’s standard in virtual product development," says Dr. André Stork of the Fraunhofer Institute for Computer Graphics (IGD) in Darmstadt.

Until now, DMU and the associated software tools have only taken product geometry into account. "However, a growing number of the mechatronic components being used today are still not fully represented in virtual test models, although this is precisely what manufacturers urgently need. Discussions with industry partners have shown that these functionalities are what companies want most," Stork points out in explaining the project's background.

"With the help of various software packages, Functional DMU can simulate a mechatronic product's software-related components as well as its electronic and mechanical components. We import the individual components into a complete model. Once this has been done, we can quickly determine whether the components work well together, or whether there are safety issues such as windows that are too thick and heavy, or an engine that is too weak," the specialist says. Close cooperation between mechanics, electronics and software development is particularly important. In addition to the work of IGD researchers, experts from the Design Automation Division at the Fraunhofer Institute for Integrated Circuits IIS, the Fraunhofer Institute for Open Communication Systems FOKUS and the Fraunhofer Institute for Structural Durability and System Reliability LBF have also contributed to the project.

Together, they have developed a Functional DMU framework that can integrate the mechatronic properties of individual components into the simulation, and can also evaluate them. The framework combines a variety of different commercial simulators, such as SimPack, Matlab/Simulink and Dymola. Here, it is particularly important that the behavior of individual components be visualized in real time. There are now demonstrators that show how Functional DMU works. One of these is the virtual power window, which will be on display at the joint Fraunhofer booth at the Hannover Messe (Hall 17, Booth D60). The next project on the scientists' agenda is the simulation of a steering test rig. Here, again, mechanical, electrical and software components work interactively.

Monika Weiner | alfa
Further information:
http://www.fraunhofer.de/EN/press/pi/2008/04/PressRelease10April2008.jsp

More articles from Automotive Engineering:

nachricht Three Autonomous Mini Buses for Karlsruhe
14.05.2019 | FZI Forschungszentrum Informatik

nachricht A Jetsons future? Assessing the role of flying cars in sustainable mobility
10.04.2019 | University of Michigan

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>