Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers to Create Parts of Virtual Crash Test Dummy

15.12.2008
Two teams of engineers with the University of Virginia's Center for Biomechanics will play major roles in the creation of a new "virtual" crash test dummy, one that will live entirely within computers, but will be more realistic than any physical dummy ever subjected to a crash test.

You really can learn a lot from a dummy.

For decades, automakers have been crashing test dummies to gain insight to how various auto safety systems protect – or fail to protect – people during car accidents. But those dummies are made of plastic and steel, not tissue and bone. They can teach only so much.

A new generation of dummies will tell a lot more. An international group of automakers and suppliers has formed a Global Human Body Models Consortium to fund the best minds to build a better dummy.

Two teams of engineers with the University of Virginia's Center for Biomechanics will play major roles in the creation of this new "virtual" dummy, one that will live entirely within computers, but will be more realistic than any physical dummy ever subjected to a crash test.

These will be highly detailed computer dummies – computational models of a full human being – including extreme lifelike detail of the complexities and characteristics of flesh, bones, ligaments, blood vessels and organs.

"Already, cars and their safety systems are designed on computers," said Richard Kent, one of U.Va.'s team leaders on the project and a professor of mechanical and aerospace engineering. "It's logical that we would create a virtual crash test dummy that would allow us to test these safety systems before they are ever physically built."

Kent and his six-member team is charged with creating a highly detailed and realistic computer model of the human thorax and upper extremities, including the ribcage, muscles and ligaments, and the lungs and heart.

Jeff Crandall, a professor of mechanical and aerospace engineering and director of U.Va.'s Center for Applied Biomechanics, is leading another team in the development of a virtual pelvis and lower extremities. The Global Human Body Models Consortium recently awarded the two teams $3 million to complete their projects within the next few years.

Teams of researchers at six other universities and institutes are creating models of other parts of the human body, including the head, neck and abdomen.

"Eventually all of these models will be joined together to create the most sophisticated and lifelike simulation of the entire human body ever assembled for safety testing," said Damien Subit, a U.Va. research scientist working on the model of the thorax.

He said the virtual human will be subjected to nearly infinite virtual crash scenarios to determine in graphic detail what happens to organs, bone and tissue when subjected to forces and impacts from a range of angles at different velocities. Researchers will be able to see, in effect, how a neck breaks in a crash, how a lung is punctured by a broken rib or a liver is bruised or a hip shattered.

"We are creating models, based on the actual anatomic details of the human body, that will respond to stress and strain and impact in the same way the actual human body does, so we can see precisely how injuries occur," Kent said. "The ultimate result will be cars with far better safety systems, minimizing the severity of injuries and the frequency of fatalities."

The advantages of a virtual dummy, compared to the typical physical crash test dummy, are huge. Currently, a typical crash test costs about $5,000 to $100,000. A virtual crash will cost nearly nothing – once the dummy is developed. And a regular physical dummy, with a life span of about 10 years, must be repaired after each crash. A virtual dummy will be, in a sense, immortal, and could be used repeatedly in a far wider range of crash scenarios.

Current physical dummies are built in only three height and weight models, representing an approximation of the many sizes of humans. The virtual dummy eventually will be configured in variable sizes and weights, representing the true range of human body types.

"This will be an adaptable, cost-saving system that will provide amazing insight to body injuries for improving auto safety," Kent said.

He added that the virtual dummy could be useful in other ways as well, such as for the design of safer sporting goods, and in medical schools for students studying trauma injuries.

Contacts: Richard Kent, U.Va. researcher
434-296-7288, ext. 133
rwk3c@virginia.edu

Fariss Samarrai | Newswise Science News
Further information:
http://www.virginia.edu

More articles from Automotive Engineering:

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>