Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decorators Uncover Rare Architectural Find

04.02.2005


An exciting find has been made by decorators working at A-listed Lilybank House, which belongs to the University of Glasgow. Hidden beneath layers of paint the decorators discovered colourful original stencilling work which experts are sure date back to 1863, when this addition to the house was designed by Alexander ‘Greek’ Thomson.



The University of Glasgow immediately called in Historic Scotland’s conservation experts to investigate and manage the conservation process.

Robert Wilmot, Historic Scotland Conservation Centre Manager, who is leading the conservation work at Lilybank House, said: “This really is an exciting find of national importance. Even though Thomson was working comparatively recently, we have very little evidence of his style of interiors. In fact, it has been said that we know more about the two-thousand year-old interiors of Pompeii and Herculaneum than we do about Glasgow buildings of a century ago! Over the coming months Historic Scotland’s conservation team will be working to ensure that we learn and record as much as we can about the stencil work.”


Dr Sally Rush, from the Department of Art History at the University of Glasgow, said: “Although Thompson’s extraordinary wall decoration at Holmwood House (1856) has now been uncovered, it’s fascinating to see, at last, one of his later domestic interiors in Glasgow’s West End emerging from under layers of paint. The University of Glasgow can now include Thomson’s work at Lilybank House in its collection of on-campus highly innovative 19th century interiors by the architects Charles Rennie Mackintosh, J.J. Burnet, and James Salmon and John Gaff Gillespie which underpin its importance as a centre for the teaching and research of historic interiors and the decorative arts.”

Alexander Thomson, one of Scotland’s greatest architects, created some of the most unique secular and ecclesiastical buildings of the Victorian era, blending neo-classical conventionality with Egyptian and oriental themes to produce buildings which have few equals anywhere when it comes to sheer originality.

Historic Scotland’s architectural paint research in the entrance hall has found, under numerous layers of paint, a mural frieze running along the bottom of the wall, similar in style to another design found in the drawing room. The conservators have not ruled out finding more murals as work progresses.

The bright colours found in this area are typical of Thomson’s other work, particularly the interiors of Holmwood House in Glasgow, where Historic Scotland conservators were also able to uncover examples of Thomson’s original rich decoration.

What makes this rare find even more remarkable is that Lilybank House is already known as one of Glasgow’s finest buildings and is unique in that it is the only known example of a building that has been added to by both of Glasgow’s most famous architects. While the original house dates back to around 1850, the building features an 1863 addition by Alexander Thomson and an 1895 addition believed to be by Charles Rennie Mackintosh.

The delicate conservation process is expected to take some time and it is hoped that the investigation will enable the careful recording of as much evidence as possible which will add to our knowledge and understanding of one of Scotland’s most important architects.

Jenny Murray | alfa
Further information:
http://www.gla.ac.uk

More articles from Architecture and Construction:

nachricht Living bridges: How traditional Indian building techniques can make modern cities more climate-friendly
18.11.2019 | Technische Universität München

nachricht Corrosion - Slow Decay
22.10.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Detailed insight into stressed cells

05.12.2019 | Life Sciences

State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing

05.12.2019 | Life Sciences

First field measurements of laughing gas isotopes

05.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>