Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insulating bricks with microscopic bubbles

16.01.2018

Better thermal insulation means lower heating costs - but this should not be at the expense of exciting architecture. A new type of brick filled with aerogel could make thin and highly insulating walls possible in the future - without any additional insulation layer.

The calculation is simple: the better a building is insulated, the less heat is lost in winter - and the less energy is needed to achieve a comfortable room temperature. No wonder, then, that the Swiss Federal Office of Energy (SFOE) regularly raises the requirements for building insulation.


Insulates as well as no other brick: The aerogel-filled Aerobrick.

Empa


In order to achieve the same insulation values as a 165 mm thick wall of aerobricks, a wall of perlite bricks must be 263 mm thick - and a wall of non-insulating bricks even more than one meter!

Empa

Traditionally, the insulating layers are applied to the finished walls. Increasingly, however, self-insulating bricks are being used - saving both work steps and costs and opening up new architectural possibilities. Insulating bricks offer a workable compromise between mechanical and thermal properties and are also suited for multi-storey buildings.

They are already available on the market in numerous models: some have multiple air-filled chambers, others have larger cavities filled with insulating materials such as pearlite, mineral wool or polystyrene. Their thermal conductivity values differ depending on the structure and filling material. In order to reach the in-sulation values of walls with seperate insulating layers, the insulating bricks are usually considerably thicker than normal bricks.

Aerogel instead of Perlite

Empa researchers have now replaced Perlite in insulating bricks with Aerogel: a highly porous solid with very high thermal insulation properties that can withstand temperatures of up to 300°C (see box). It is not an novel material for the researchers: they have already used it to develop a high-performance insulating plaster which, among other things, allows historical buildings to be reno-vated energetically without affecting their appearance.

Together with his colleagues, Empa researcher Jannis Wernery from the research department "Building Energy Materials and Components" has developed a paste-like mixture of aerogel particles to be used as filler material for the brick. "The material can easily be filled into the cavities and then joins with the clay of the bricks," says Wernery. "The aerogel stays in the bricks - you can work with them as usual." The "Aerobrick" was born.

A comparison in a special measuring device for thermal conductivity at an average temperature of 10°C shows that the perlite-filled bricks with the same structure and thickness insulate by about a third less than the aerobrick. In other words, in order to achieve the required insulation values, a wall of perlite brick must be about 35% thicker than an aerobrick wall.

Even more impressive is the comparison with ordinary brickwork made of non-insulating bricks: These conduct heat up to eight times better. A conventional wall would therefore have to be almost two metres deep in order to insulate as well as an aerobricks wall of just 20 centimetres in depth. With a measured thermal conductivity of just 59 milliwatts per square meter and Kelvin temperature difference, the Aerobrick is currently the best insulating brick in the world.

But now and in the very near future, no one will probably be able to build a new house from aerobricks - the filling material is currently still too expensive. Wernery calculates that at today's market price for aerogel, a single square metre of a brick wall would generate additional costs of around 500 francs. However, experts assume that the costs for Aerogel will fall massively in the near to medium term - then nothing will stand in the way of the use of the new wonder brick.

Info: Aerogel

Aerogels are a relatively new development as insulating materials in the building sector. The base for the material are mostly silicates, but in volume it consists of more than 90% of air-filled pores with sizes in the nano range. This minimizes the energy transfer through the movement of the air molecules - in other words, aerogels are highly efficient insulating materials. In addition to its thermal properties, aerogels are vapour permeable, absorb almost no moisture, recyclable, non-toxic and non-combustible. This makes it an almost ideal thermal insulation material for buildings.

Weitere Informationen:

https://www.empa.ch/web/s604/aerobrick

Rainer Klose | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

More articles from Architecture and Construction:

nachricht Living bridges: How traditional Indian building techniques can make modern cities more climate-friendly
18.11.2019 | Technische Universität München

nachricht Corrosion - Slow Decay
22.10.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>