Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Healthy living without damp and mold

16.11.2016

The Fraunhofer Institute for Building Physics IBP has been studying the effects of mold for decades. Its scientists carry out intensive research on solutions and tools for preventing, combating, classifying and evaluating the mold caused by moisture. Using a baseline survey, the scientists are now showing how widespread mold and moisture problems are in German and European homes and what effects they have on people and buildings. In this way, they are confirming the need for continuous research and further innovative solutions.

Mold infestation is not a rare phenomenon. In Germany alone, some 10 percent of all structural damage to buildings is related to mold. If the building is not allowed to breathe or if the occupants do not air the rooms sufficiently, moisture can build up in the interior.


Reasons for mold-related damage in well insulated buildings.

© Fraunhofer IBP (according to Oswald, R., Liebert, G. Spilker, R.: Schimmelpilzbefall bei hochwärmegedämmten Neu- und Altbauten. Bauforschung für die Praxis, band 84. Fraunhofer IRB Verla


Proportion of the overall European population who live in damp homes – caused by leaking roofs, damp walls, or rotting window frames. (Data from 2013; for Ireland, from 2012)

© Fraunhofer IBP

This leads to excessive humidity, which in combination with cooler external walls – par example because of deficient thermal insulation – provides the ideal conditions for mold to thrive. Another problem is when people move into new buildings too soon after construction, as excessive residual moisture can also quickly lead to mold formation. Further common construction-related factors that can lead to mold are defects such as thermal bridges, faulty insulation work, water damage from defective pipes, and poorly positioned furniture that prevents air from circulating between the walls and the furniture.

According to a survey conducted by Fraunhofer IBP scientists, some 84 million people in the European Union – including Iceland, Norway and Switzerland – live in damp homes. The consequences for their health can be serious. For example, asthma has long been very prevalent, affecting 7 percent of adults in Europe.

“In the baseline study we carried out, we concentrated on the relationship between mold in interior spaces and its effects on the health of occupants,” explains Prof. Gunnar Grün, deputy director of Fraunhofer IBP and head of the Energy Efficiency and Indoor Climate department.

“For instance, we quantified the risk for people living in homes with mold problems of developing a respiratory disease. Fundamentally, we are convinced that mold and mold prevention are an important topic for research and development into healthy living. The baseline survey we carried out offers additional proof of this.”

Excerpts from results and findings

Fraunhofer IBP’s baseline study compiled data from 170 scientific surveys. These were based primarily on observations and did not include experimental studies such as clinical trials. The majority (99) were empirical studies, while the remainder were case analyses (31) and cohort analyses (40). The evaluation for the meta-study shows a clear correlation between respiratory tract infections and damp, moldy interiors.

Prof. Grün and his colleagues were able to demonstrate that the probability of developing asthma is 40 percent higher when people live in a mold-infested home. When we apply this ratio to the number of Europeans who live in damp homes compared to those who live in homes without moisture problems, this gives us a figure of about 2,2 million people who suffer from asthma specifically because they live in a damp, moldy environment.

In order to combat this illness-causing problem of defective building stock, future renovation efforts must stress the importance of professional planning, design, and workmanship. If indoor climate and structural engineering conditions were improved during renovation work, the number of people affected by the problem could be reduced. If we take a conservative modernization rate of 2 percent per year as a baseline together with higher quality such that only 8 percent of renovated buildings are affected by moisture problems instead of 16 percent, by 2050 we would see around a 25-percent drop in the number of people experiencing these problems. In the case of asthma, this would result in approximately 550,000 fewer people developing the illness, with the associated reduction in costs for the public health system.

Approaches to tackling the problem

In addition to being unhygienic, the uncontrolled growth of mold inside homes is also a potential risk to the health of the people living there. By the time a patch of mold becomes visible, there is already an area of 20 square centimeters that requires urgent treatment. In various departments, Fraunhofer IBP carries out research into issues such as how to avoid and combat unwanted moisture in building components and develops solutions including balcony reinforcement anchors for reducing thermal bridges. Transient calculations of the coupled one- and two-dimensional heat and moisture transport in multi-layer components and buildings can be carried out in advance under natural climate conditions thanks to the WUFI® (a German acronym that stands for heat and moisture transiency) software family. This calculation method was developed at Fraunhofer IBP and validated on outdoor and laboratory data from all over the world. Among other things, it makes it possible to realistically calculate the transient hygrothermal behavior of components and buildings under natural climate conditions. In addition, the scientists create evaluation classes to grade the risk to health and test the environmental compatibility of algae and fungi biocides. Other building physics aspects that can be explored in order to prohibit the problem of damp homes and mold infestations include investigations into the drying behavior of components and the question as to whether individual fireplaces or stoves eliminate the risk of mold growing on the interior side of walls.

Weitere Informationen:

https://www.ibp.fraunhofer.de/en/Press/Press_releases/pm_16112016_literaturestud...

Presse Institute Kommunikation | Fraunhofer-Gesellschaft

More articles from Architecture and Construction:

nachricht New Generation of Cleaning Tools for CSP Plants Reduces the Water Consumption
09.11.2018 | Steinbeis-Europa-Zentrum

nachricht memory-steel - a new material for the strengthening of buildings
23.10.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>