Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tomatoes get boost in growth, antioxidants from nano-sized nutrients

09.11.2015

With the world population expected to reach 9 billion by 2050, engineers and scientists are looking for ways to meet the increasing demand for food without also increasing the strain on natural resources, such as water and energy -- an initiative known as the food-water-energy nexus.

Ramesh Raliya, PhD, a postdoctoral researcher, and Pratim Biswas, PhD, the Lucy & Stanley Lopata Professor and chair of the Department of Energy, Environmental & Chemical Engineering, both at the School of Engineering & Applied Science at Washington University in St. Louis, are addressing this issue by using nanoparticles to boost the nutrient content and growth of tomato plants.


This illustration shows the different effects of the application of nano nutrients on a tomato plant.

Credit: Ramesh Raliya, Pratim Biswas

Taking a clue from their work with solar cells, the team found that by using zinc oxide and titanium dioxide nanoparticles, the tomato plants better absorbed light and minerals, and the fruit had higher antioxidant content.

"When a plant grows, it signals the soil that it needs nutrients," Biswas says. "The nutrient it needs is not in a form that the plant can take right away, so it secretes enzymes, which react with the soil and trigger bacterial microbes to turn the nutrients into a form that the plant can use. We're trying to aid this pathway by adding nanoparticles."

Zinc is an essential nutrient for plants, helps other enzymes function properly and is an ingredient in conventional fertilizer. Titanium is not an essential nutrient for plants, Raliya says, but boosts light absorption by increasing chlorophyll content in the leaves and promotes photosynthesis, properties Biswas' lab discovered while creating solar cells.

The team used a very fine spray using novel aerosolization techniques to directly deposit the nanoparticles on the leaves of the plants for maximum uptake.

"We found that our aerosol technique resulted in much greater uptake of nutrients by the plant in comparison to application of the nanoparticles to soil," Raliya says. "A plant can only uptake about 20 percent of the nutrients applied through soil, with the remainder either forming stable complexes with soil constituents or being washed away with water, causing runoff. In both of the latter cases, the nutrients are unavailable to plants."

Overall, plants treated with the nanoparticles via aerosol routes produced nearly 82 percent (by weight) more fruit than untreated plants. In addition, the tomatoes from treated plant showed an increase in lycopene, an antioxidant linked to reduced risk of cancer, heart disease and age-related eye disorders, of between 80 percent and 113 percent.

Previous studies by other researchers have shown that increasing the use of nanotechnology in agriculture in densely populated countries such as India and China has made an impact on reducing malnutrition and child mortality. These tomatoes will help address malnutrition, Raliya says, because they allow people to get more nutrients from tomatoes than those conventionally grown.

In the study, published online last month in the journal Metallomics, the team found that the nanoparticles in the plants and the tomatoes were well below the USDA limit and considerably lower than what is used in conventional fertilizer. However, they still have to be cautious and select the best concentration of nanoparticles to use for maximum benefit, Biswas says.

Raliya and the rest of the team are now working to develop a new formulation of nanonutrients that includes all 17 elements required by plants.

"In 100 years, there will be more cities and less farmland, but we will need more food," Raliya says. "At the same time, water will be limited because of climate change. We need an efficient methodology and a controlled environment in which plants can grow."

###

Raliya R, Nair R, Chavalmane S, Wang W-N, Biswas P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics. Published online Oct. 8, 2015. DOI: 10.1039/c5mt00168d.

Funding for this research was provided by the Lopata Endowment and the National Science Foundation.

The School of Engineering & Applied Science at Washington University in St. Louis focuses intellectual efforts through a new convergence paradigm and builds on strengths, particularly as applied to medicine and health, energy and environment, entrepreneurship and security. With 88 tenured/tenure-track and 40 additional full-time faculty, 1,300 undergraduate students, more than 900 graduate students and more than 23,000 alumni, we are working to leverage our partnerships with academic and industry partners -- across disciplines and across the world -- to contribute to solving the greatest global challenges of the 21st century.

Media Contact

Erika Ebsworth-Goold
eebsworth-good@wustl.edu
314-935-2914

 @WUSTLnews

http://www.wustl.edu 

Erika Ebsworth-Goold | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht New research recovers nutrients from seafood process water
31.10.2018 | Chalmers University of Technology

nachricht Plant Hormone Makes Space Farming a Possibility
17.10.2018 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>