Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First step to reduce plant need for nitrogen fertilizer uncovered

30.09.2013
MU scientists say discovery could save farmers billions and protect the environment.

Nitrogen fertilizer costs U.S. farmers approximately $8 billion each year, and excess fertilizer can find its way into rivers and streams, damaging the delicate water systems.

Now, a discovery by a team of University of Missouri researchers could be the first step toward helping crops use less nitrogen, benefitting both farmers' bottom lines and the environment. The journal Science published the research this month.

Gary Stacey, an investigator in the MU Bond Life Sciences Center and professor of plant sciences in the College of Agriculture, Food and Natural Resources, found that crops, such as corn, are "confused" when confronted with an invasive, but beneficial, bacteria known as rhizobia bacteria. When the bacteria interact correctly with a crop, the bacteria receive some food from the plant and, simultaneously, produce nitrogen that most plants need. In his study, Stacey found that many other crops recognize the bacteria, but do not attempt to interact closely with them.

"The problem is that corn, tomatoes and other crops have a different response and don't support an intimate interaction with the rhizobia, thus making farmers apply larger amounts of nitrogen than might otherwise be necessary," Stacey said. "Scientists have known about this beneficial relationship since 1888, but it only exists in legume crops, like soybeans and alfalfa. We're working to transfer this trait to other plants like corn, wheat or rice, which we believe is possible since these other plants recognize the bacteria. It's a good first step."

When legumes like soybeans sense a signal from the bacteria, they create nodules where the bacteria gather and produce atmospheric nitrogen that the plants can then use to stimulate their growth. This reaction doesn't happen in other plants.

"There's this back and forth battle between a plant and a pathogen," said Yan Liang, a co-author of the study and post-doctoral fellow at MU. "Rhizobia eventually developed a chemical to inhibit the defense response in legumes and make those plants recognize it as a friend. Meanwhile, corn, tomatoes and other crops are still trying to defend themselves against this bacteria."

In the study, Stacey and Liang treated corn, soybeans, tomatoes and other plants to see how they responded when exposed to the chemical signal from the rhizobia bacteria. They found that the plants did receive the signal and, like legumes, inhibited the normal plant immune system. However, soybeans, corn and these other plants don't complete the extra step of forming nodules to allow the bacteria to thrive.

"The important finding was that these other plants didn't just ignore the rhizobia bacteria," Stacey said. "They recognized it, but just activated a different mechanism. Our next step is to determine how we can make the plants understand that this is a beneficial relationship and get them to activate a different mechanism that will produce the nodules that attract the bacteria instead of trying to fight them."

The study was funded by a grant from the U.S. Department of Energy. For more information about this research, please visit: http://decodingscience.missouri.edu/2013/09/the-secret-of-the-legume.

Christian Basi | EurekAlert!
Further information:
http://www.missouri.edu

Further reports about: agriculture nitrogen fertilizer rhizobia bacteria water system

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Formed to Meet Customers’ Needs – New Laser Beams for Glass Processing

17.12.2018 | Physics and Astronomy

Preserving soil quality in the long term

17.12.2018 | Architecture and Construction

New RNA sequencing strategy provides insight into microbiomes

17.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>